Trend analysis of the power law process using Expectation–Maximization algorithm for data censored by inspection intervals
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2011.03.018
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Louit, D.M. & Pascual, R. & Jardine, A.K.S., 2009. "A practical procedure for the selection of time-to-failure models based on the assessment of trends in maintenance data," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1618-1628.
- Caroni, C., 2010. "“Failure limited†data and TTT-based trend tests in multiple repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 95(6), pages 704-706.
- Regattieri, A. & Manzini, R. & Battini, D., 2010. "Estimating reliability characteristics in the presence of censored data: A case study in a light commercial vehicle manufacturing system," Reliability Engineering and System Safety, Elsevier, vol. 95(10), pages 1093-1102.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Ye, Zhi-Sheng & Xie, Min & Tang, Loon-Ching, 2013. "Reliability evaluation of hard disk drive failures based on counting processes," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 110-118.
- Toledo, Maria LuÃza Guerra de & Freitas, Marta A. & Colosimo, Enrico A. & Gilardoni, Gustavo L., 2015. "ARA and ARI imperfect repair models: Estimation, goodness-of-fit and reliability prediction," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 107-115.
- Peng, Yizhen & Wang, Yu & Zi, YanYang & Tsui, Kwok-Leung & Zhang, Chuhua, 2017. "Dynamic reliability assessment and prediction for repairable systems with interval-censored data," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 301-309.
- Garmabaki, A.H.S. & Ahmadi, Alireza & Block, Jan & Pham, Hoang & Kumar, Uday, 2016. "A reliability decision framework for multiple repairable units," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 78-88.
- Xin-Yu Tian & Xincheng Shi & Cheng Peng & Xiao-Jian Yi, 2021. "A Reliability Growth Process Model with Time-Varying Covariates and Its Application," Mathematics, MDPI, vol. 9(8), pages 1-15, April.
- Cui, L.X. & Du, Yi-Mu & Sun, C.P., 2023. "On system reliability for time-varying structure," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Yizhen, Peng & Yu, Wang & Jingsong, Xie & Yanyang, Zi, 2020. "Adaptive stochastic-filter-based failure prediction model for complex repairable systems under uncertainty conditions," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
- Giorgio, M. & Guida, M. & Pulcini, G., 2014. "Repairable system analysis in presence of covariates and random effects," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 271-281.
- Xun Xiao & Amitava Mukherjee & Min Xie, 2016. "Estimation procedures for grouped data – a comparative study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(11), pages 2110-2130, August.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
- Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
- Braglia, Marcello & Carmignani, Gionata & Frosolini, Marco & Zammori, Francesco, 2012. "Data classification and MTBF prediction with a multivariate analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 27-35.
- Barabadi, A. & Ayele, Y.Z., 2018. "Post-disaster infrastructure recovery: Prediction of recovery rate using historical data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 209-223.
- Hu, Wei & Yang, Zhaojun & Chen, Chuanhai & Wu, Yue & Xie, Qunya, 2021. "A Weibull-based recurrent regression model for repairable systems considering double effects of operation and maintenance: A case study of machine tools," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
- Hu, Wei & Westerlund, Per & Hilber, Patrik & Chen, Chuanhai & Yang, Zhaojun, 2022. "A general model, estimation, and procedure for modeling recurrent failure process of high-voltage circuit breakers considering multivariate impacts," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
- Peng, Yizhen & Wang, Yu & Zi, YanYang & Tsui, Kwok-Leung & Zhang, Chuhua, 2017. "Dynamic reliability assessment and prediction for repairable systems with interval-censored data," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 301-309.
- Lin, Yi-Kuei & Chang, Ping-Chen, 2012. "Evaluate the system reliability for a manufacturing network with reworking actions," Reliability Engineering and System Safety, Elsevier, vol. 106(C), pages 127-137.
- Ali Nouri Gharahasanlou & Mohammad Ataei & Reza Khalokakaie & Abbas Barabadi & Vahid Einian, 2017. "Risk based maintenance strategy: a quantitative approach based on time-to-failure model," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 8(3), pages 602-611, September.
- Jiang, Renyan & Qi, Faqun & Cao, Yu, 2023. "Relation between aging intensity function and WPP plot and its application in reliability modelling," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Juan Izquierdo & Adolfo Crespo Márquez & Jone Uribetxebarria & Asier Erguido, 2019. "Framework for Managing Maintenance of Wind Farms Based on a Clustering Approach and Dynamic Opportunistic Maintenance," Energies, MDPI, vol. 12(11), pages 1-17, May.
- Kuznetsova, Elizaveta & Li, Yan-Fu & Ruiz, Carlos & Zio, Enrico & Ault, Graham & Bell, Keith, 2013. "Reinforcement learning for microgrid energy management," Energy, Elsevier, vol. 59(C), pages 133-146.
- Wu, Shaomin, 2021. "Two methods to approximate the superposition of imperfect failure processes," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
- Mostafa Aliyari & Yonas Z Ayele & Abbas Barabadi & Enrique Lopez Droguett, 2019. "Risk analysis in low-voltage distribution systems," Journal of Risk and Reliability, , vol. 233(2), pages 118-138, April.
- van Staden, Heletjé E. & Deprez, Laurens & Boute, Robert N., 2022. "A dynamic “predict, then optimize” preventive maintenance approach using operational intervention data," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1079-1096.
- Rezgar Zaki & Abbas Barabadi & Javad Barabady & Ali Nouri Qarahasanlou, 2022. "Observed and unobserved heterogeneity in failure data analysis," Journal of Risk and Reliability, , vol. 236(1), pages 194-207, February.
- Seyed Hadi Hoseinie & Hussan Al-Chalabi & Behzad Ghodrati, 2018. "Comparison between Simulation and Analytical Methods in Reliability Data Analysis: A Case Study on Face Drilling Rigs," Data, MDPI, vol. 3(2), pages 1-12, April.
- Kabir, Elnaz & Guikema, Seth & Kane, Brian, 2018. "Statistical modeling of tree failures during storms," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 68-79.
- Vanderschueren, Toon & Boute, Robert & Verdonck, Tim & Baesens, Bart & Verbeke, Wouter, 2023. "Optimizing the preventive maintenance frequency with causal machine learning," International Journal of Production Economics, Elsevier, vol. 258(C).
- Moghadam, Mehdi Akbari & Bagheri, Sajad & Salemi, Amir Hosein & Tavakoli, Mohammad Bagher, 2023. "Long-term maintenance planning of medium voltage overhead lines considering the uncertainties and reasons for interruption in a real distribution network," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
More about this item
Keywords
Censoring; EM algorithm; Maximum likelihood; Medical infusion pump; Power law process; Trend test;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:96:y:2011:i:10:p:1340-1348. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.