A general model, estimation, and procedure for modeling recurrent failure process of high-voltage circuit breakers considering multivariate impacts
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2021.108276
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- de Oliveira, CÃcero Carlos Felix & Firmino, Paulo Renato Alves & Cristino, Cláudio Tadeu, 2019. "A tool for evaluating repairable systems based on Generalized Renewal Processes," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 281-297.
- Rajiv N. Rai & Garima Sharma, 2017. "Goodness-of-fit test for generalised renewal process," International Journal of Reliability and Safety, Inderscience Enterprises Ltd, vol. 11(1/2), pages 116-131.
- Louit, D.M. & Pascual, R. & Jardine, A.K.S., 2009. "A practical procedure for the selection of time-to-failure models based on the assessment of trends in maintenance data," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1618-1628.
- Makis, Viliam & Jardine, Andrew K. S., 1993. "A note on optimal replacement policy under general repair," European Journal of Operational Research, Elsevier, vol. 69(1), pages 75-82, August.
- Lam, Yeh, 2007. "A geometric process maintenance model with preventive repair," European Journal of Operational Research, Elsevier, vol. 182(2), pages 806-819, October.
- Brenière, Léa & Doyen, Laurent & Bérenguer, Christophe, 2020. "Virtual age models with time-dependent covariates: A framework for simulation, parametric inference and quality of estimation," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
- Arnold, Richard & Chukova, Stefanka & Hayakawa, Yu & Marshall, Sarah, 2020. "Geometric-Like Processes: An Overview and Some Reliability Applications," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
- Yevkin, Alexander & Krivtsov, Vasiliy, 2020. "A generalized model for recurrent failures prediction," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
- Hu, Wei & Yang, Zhaojun & Chen, Chuanhai & Wu, Yue & Xie, Qunya, 2021. "A Weibull-based recurrent regression model for repairable systems considering double effects of operation and maintenance: A case study of machine tools," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
- Krivtsov, V. & Yevkin, O., 2013. "Estimation of G-renewal process parameters as an ill-posed inverse problem," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 10-18.
- Syamsundar, A. & Naikan, V.N.A. & Wu, Shaomin, 2021. "Extended Arithmetic Reduction of Age Models for the Failure Process of a Repairable System," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Chen, Chuanhai & Li, Bowen & Guo, Jinyan & Liu, Zhifeng & Qi, Baobao & Hua, Chunlei, 2022. "Bearing life prediction method based on the improved FIDES reliability model," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
- Jiang, Renyan & Li, Fengping & Xue, Wei & Cao, Yu & Zhang, Kunpeng, 2023. "A robust mean cumulative function estimator and its application to overhaul time optimization for a fleet of heterogeneous repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
- Ji, Ziguang & Chen, Yi & Ma, Xiaobing & Cai, Yikun & Yang, Li, 2024. "Hierarchical condition-based maintenance planning for corrosion process considering natural environmental impact," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Hu, Wei & Yang, Zhaojun & Chen, Chuanhai & Wu, Yue & Xie, Qunya, 2021. "A Weibull-based recurrent regression model for repairable systems considering double effects of operation and maintenance: A case study of machine tools," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
- Tanwar, Monika & Rai, Rajiv N. & Bolia, Nomesh, 2014. "Imperfect repair modeling using Kijima type generalized renewal process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 24-31.
- An, Youjun & Chen, Xiaohui & Hu, Jiawen & Zhang, Lin & Li, Yinghe & Jiang, Junwei, 2022. "Joint optimization of preventive maintenance and production rescheduling with new machine insertion and processing speed selection," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
- Wu, Shaomin, 2021. "Two methods to approximate the superposition of imperfect failure processes," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
- Ait Mokhtar, El Hassene & Laggoune, Radouane & Chateauneuf, Alaa, 2023. "Imperfect maintenance modeling and assessment of repairable multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Louzada, Francisco & Tomazella, Vera L.D. & Gonzatto, Oilson A. & Bochio, Gustavo & Milani, Eder A. & Ferreira, Paulo H. & Ramos, Pedro L., 2022. "Reliability assessment of repairable systems with series–parallel structure subjected to hierarchical competing risks under minimal repair regime," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
- Izquierdo, J. & Márquez, A. Crespo & Uribetxebarria, J. & Erguido, A., 2020. "On the importance of assessing the operational context impact on maintenance management for life cycle cost of wind energy projects," Renewable Energy, Elsevier, vol. 153(C), pages 1100-1110.
- Guo R. & Ascher H. & Love E., 2001. "Towards Practical and Synthetical Modelling of Repairable Systems," Stochastics and Quality Control, De Gruyter, vol. 16(1), pages 147-182, January.
- Love, C. E. & Zhang, Z. G. & Zitron, M. A. & Guo, R., 2000. "A discrete semi-Markov decision model to determine the optimal repair/replacement policy under general repairs," European Journal of Operational Research, Elsevier, vol. 125(2), pages 398-409, September.
- Braglia, Marcello & Carmignani, Gionata & Frosolini, Marco & Zammori, Francesco, 2012. "Data classification and MTBF prediction with a multivariate analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 27-35.
- Dehayem Nodem, F.I. & Kenné, J.P. & Gharbi, A., 2011. "Simultaneous control of production, repair/replacement and preventive maintenance of deteriorating manufacturing systems," International Journal of Production Economics, Elsevier, vol. 134(1), pages 271-282, November.
- Rajiv N Rai & Nomesh Bolia, 2014. "Availability-based optimal maintenance policies for repairable systems in military aviation by identification of dominant failure modes," Journal of Risk and Reliability, , vol. 228(1), pages 52-61, February.
- Chehade, Abdallah & Savargaonkar, Mayuresh & Krivtsov, Vasiliy, 2022. "Conditional Gaussian mixture model for warranty claims forecasting," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
- Syamsundar, A. & Naikan, V.N.A. & Wu, Shaomin, 2021. "Extended Arithmetic Reduction of Age Models for the Failure Process of a Repairable System," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Cláudio Tadeu Cristino & Piotr Żebrowski & Matthias Wildemeersch, 2020. "Assessing the time intervals between economic recessions," PLOS ONE, Public Library of Science, vol. 15(5), pages 1-20, May.
- Guo, Chiming & Wang, Wenbin & Guo, Bo & Si, Xiaosheng, 2013. "A maintenance optimization model for mission-oriented systems based on Wiener degradation," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 183-194.
- Krivtsov, V. & Yevkin, O., 2013. "Estimation of G-renewal process parameters as an ill-posed inverse problem," Reliability Engineering and System Safety, Elsevier, vol. 115(C), pages 10-18.
- Beutner, Eric, 2023. "A review of effective age models and associated non- and semiparametric methods," Econometrics and Statistics, Elsevier, vol. 28(C), pages 105-119.
- Sarada, Y. & Shenbagam, R., 2021. "Optimization of a repairable deteriorating system subject to random threshold failure using preventive repair and stochastic lead time," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
More about this item
Keywords
Failure process model; High-voltage circuit breaker; Virtual age model; Scale model; Regression analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:220:y:2022:i:c:s0951832021007493. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.