IDEAS home Printed from https://ideas.repec.org/a/taf/japsta/v43y2016i11p2110-2130.html
   My bibliography  Save this article

Estimation procedures for grouped data – a comparative study

Author

Listed:
  • Xun Xiao
  • Amitava Mukherjee
  • Min Xie

Abstract

Interval-censored data are very common in the reliability and lifetime data analysis. This paper investigates the performance of different estimation procedures for a special type of interval-censored data, i.e. grouped data, from three widely used lifetime distributions. The approaches considered here include the maximum likelihood estimation, the minimum distance estimation based on chi-square criterion, the moment estimation based on imputation (IM) method and an ad hoc estimation procedure. Although IM-based techniques are extensively used recently, we show that this method is not always effective. It is found that the ad hoc estimation procedure is equivalent to the minimum distance estimation with another distance metric and more effective in the simulation. The procedures of different approaches are presented and their performances are investigated by Monte Carlo simulation for various combinations of sample sizes and parameter settings. The numerical results provide guidelines to analyse grouped data for practitioners when they need to choose a good estimation approach.

Suggested Citation

  • Xun Xiao & Amitava Mukherjee & Min Xie, 2016. "Estimation procedures for grouped data – a comparative study," Journal of Applied Statistics, Taylor & Francis Journals, vol. 43(11), pages 2110-2130, August.
  • Handle: RePEc:taf:japsta:v:43:y:2016:i:11:p:2110-2130
    DOI: 10.1080/02664763.2015.1130801
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1080/02664763.2015.1130801
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1080/02664763.2015.1130801?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarah E. Michalak & Michael S. Hamada & Nicolas W. Hengartner, 2013. "Analysis of interval-censored data with random unknown end points: an application to soft error rate estimation," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 62(3), pages 473-486, May.
    2. B. Chandrasekar & A. Childs & N. Balakrishnan, 2004. "Exact likelihood inference for the exponential distribution under generalized Type‐I and Type‐II hybrid censoring," Naval Research Logistics (NRL), John Wiley & Sons, vol. 51(7), pages 994-1004, October.
    3. Lu, Wanbo & Tsai, Tzong-Ru, 2009. "Interval censored sampling plans for the gamma lifetime model," European Journal of Operational Research, Elsevier, vol. 192(1), pages 116-124, January.
    4. Wanbo Lu & Tzong-Ru Tsai, 2009. "Interval censored sampling plans for the log-logistic lifetime distribution," Journal of Applied Statistics, Taylor & Francis Journals, vol. 36(5), pages 521-536.
    5. Ng, H. K. T. & Chan, P. S. & Balakrishnan, N., 2002. "Estimation of parameters from progressively censored data using EM algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 39(4), pages 371-386, June.
    6. Chen, D.G. & Lio, Y.L., 2010. "Parameter estimations for generalized exponential distribution under progressive type-I interval censoring," Computational Statistics & Data Analysis, Elsevier, vol. 54(6), pages 1581-1591, June.
    7. F. Lombard & C. J. Potgieter, 2012. "A multivariate rank test for comparing mass size distributions," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(4), pages 851-865, September.
    8. Rubio, F.J. & Steel, M.F.J., 2011. "Inference for grouped data with a truncated skew-Laplace distribution," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3218-3231, December.
    9. Dehghan, Mohammad Hossein & Duchesne, Thierry, 2011. "On the performance of some non-parametric estimators of the conditional survival function with interval-censored data," Computational Statistics & Data Analysis, Elsevier, vol. 55(12), pages 3355-3364, December.
    10. Zhang, Mimi & Hu, Qingpei & Xie, Min & Yu, Dan, 2014. "Lower confidence limit for reliability based on grouped data using a quantile-filling algorithm," Computational Statistics & Data Analysis, Elsevier, vol. 75(C), pages 96-111.
    11. Taghipour, Sharareh & Banjevic, Dragan, 2011. "Trend analysis of the power law process using Expectation–Maximization algorithm for data censored by inspection intervals," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1340-1348.
    12. Tan, Zhibin, 2009. "A new approach to MLE of Weibull distribution with interval data," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 394-403.
    13. Yu-Jau Lin & Y. L. Lio, 2012. "Bayesian inference under progressive type-I interval censoring," Journal of Applied Statistics, Taylor & Francis Journals, vol. 39(8), pages 1811-1824, April.
    14. Zhao, Xingqiu & Duan, Ran & Zhao, Qiang & Sun, Jianguo, 2013. "A new class of generalized log rank tests for interval-censored failure time data," Computational Statistics & Data Analysis, Elsevier, vol. 60(C), pages 123-131.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sonal Budhiraja & Biswabrata Pradhan, 2020. "Point and interval estimation under progressive type-I interval censoring with random removal," Statistical Papers, Springer, vol. 61(1), pages 445-477, February.
    2. Ji Hwan Cha & Sophie Mercier, 2022. "Two Reliability Acceptance Sampling Plans for Items Subject to Wiener Process of Degradation," Methodology and Computing in Applied Probability, Springer, vol. 24(3), pages 1651-1668, September.
    3. Pérez-González, Carlos J. & Fernández, Arturo J. & Kohansal, Akram, 2020. "Efficient truncated repetitive lot inspection using Poisson defect counts and prior information," European Journal of Operational Research, Elsevier, vol. 287(3), pages 964-974.
    4. Lee‐Shen Chen & Ming‐Chung Yang & TaChen Liang, 2015. "Bayesian sampling plans for exponential distributions with interval censored samples," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(7), pages 604-616, October.
    5. Refah Alotaibi & Hoda Rezk & Sanku Dey & Hassan Okasha, 2021. "Bayesian estimation for Dagum distribution based on progressive type I interval censoring," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-17, June.
    6. Sukhdev Singh & Yogesh Mani Tripathi, 2018. "Estimating the parameters of an inverse Weibull distribution under progressive type-I interval censoring," Statistical Papers, Springer, vol. 59(1), pages 21-56, March.
    7. Jia, Xiang & Wang, Dong & Jiang, Ping & Guo, Bo, 2016. "Inference on the reliability of Weibull distribution with multiply Type-I censored data," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 171-181.
    8. Balakrishnan, N. & Mitra, Debanjan, 2012. "Left truncated and right censored Weibull data and likelihood inference with an illustration," Computational Statistics & Data Analysis, Elsevier, vol. 56(12), pages 4011-4025.
    9. Fernández, Arturo J. & Pérez-González, Carlos J., 2012. "Optimal acceptance sampling plans for log-location–scale lifetime models using average risks," Computational Statistics & Data Analysis, Elsevier, vol. 56(3), pages 719-731.
    10. Manoj Kumar & Sanjay Kumar Singh & Umesh Singh, 2018. "Bayesian inference for Poisson-inverse exponential distribution under progressive type-II censoring with binomial removal," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 9(6), pages 1235-1249, December.
    11. Balakrishnan, N. & Saleh, H.M., 2011. "Relations for moments of progressively Type-II censored order statistics from half-logistic distribution with applications to inference," Computational Statistics & Data Analysis, Elsevier, vol. 55(10), pages 2775-2792, October.
    12. Xin-Yu Tian & Xincheng Shi & Cheng Peng & Xiao-Jian Yi, 2021. "A Reliability Growth Process Model with Time-Varying Covariates and Its Application," Mathematics, MDPI, vol. 9(8), pages 1-15, April.
    13. Wu, Shuo-Jye & Kus, Coskun, 2009. "On estimation based on progressive first-failure-censored sampling," Computational Statistics & Data Analysis, Elsevier, vol. 53(10), pages 3659-3670, August.
    14. Tu, Shiyi & Wang, Min & Sun, Xiaoqian, 2016. "Bayesian analysis of two-piece location–scale models under reference priors with partial information," Computational Statistics & Data Analysis, Elsevier, vol. 96(C), pages 133-144.
    15. Mahdi Teimouri, 2022. "bccp: an R package for life-testing and survival analysis," Computational Statistics, Springer, vol. 37(1), pages 469-489, March.
    16. Peng, Yizhen & Wang, Yu & Zi, YanYang & Tsui, Kwok-Leung & Zhang, Chuhua, 2017. "Dynamic reliability assessment and prediction for repairable systems with interval-censored data," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 301-309.
    17. Fernández, Arturo J. & Pérez-González, Carlos J. & Aslam, Muhammad & Jun, Chi-Hyuck, 2011. "Design of progressively censored group sampling plans for Weibull distributions: An optimization problem," European Journal of Operational Research, Elsevier, vol. 211(3), pages 525-532, June.
    18. Li, Der-Chiang & Lin, Liang-Sian, 2013. "A new approach to assess product lifetime performance for small data sets," European Journal of Operational Research, Elsevier, vol. 230(2), pages 290-298.
    19. Altındağ, Ömer & Aydoğdu, Halil, 2021. "Estimation of renewal function under progressively censored data and its applications," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    20. Carlos Pérez-González & Arturo Fernández, 2013. "Classical versus Bayesian risks in acceptance sampling: a sensitivity analysis," Computational Statistics, Springer, vol. 28(3), pages 1333-1350, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:taf:japsta:v:43:y:2016:i:11:p:2110-2130. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Longhurst (email available below). General contact details of provider: http://www.tandfonline.com/CJAS20 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.