IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v169y2018icp209-223.html
   My bibliography  Save this article

Post-disaster infrastructure recovery: Prediction of recovery rate using historical data

Author

Listed:
  • Barabadi, A.
  • Ayele, Y.Z.

Abstract

The recovery of infrastructure systems is of significant concern; in order to have effective risk management planning, an accurate prediction of the recovery time is required. A system may have different recovery paths due to the time of the accident, nature of the disruptive event, and surrounding environment, among many other factors. Hence, any model, which is employed to estimate the recovery time, should be able to quantify the effect of such influencing factors. Missing data, inappropriate assumption by analysts, and lack of applicable methodology are some practical challenges for recovery rate analysis. The purpose of this paper is to develop a methodology to address these challenges. It is based on the availability and the nature of historical data; it involves various steps, including categorizing the given data set into three groups: no or missing data set, homogeneous data set, and heterogeneous data set. Here, the Bayesian approach has been employed to handle the no or missing data set group. For the heterogeneous data set group, the proposed methodology suggested the application of covariate based models. Finally, for the homogeneous data set, the methodology employed statistical trend tests, to find the appropriate regression models. The application of the methodology is illustrated by real case studies.

Suggested Citation

  • Barabadi, A. & Ayele, Y.Z., 2018. "Post-disaster infrastructure recovery: Prediction of recovery rate using historical data," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 209-223.
  • Handle: RePEc:eee:reensy:v:169:y:2018:i:c:p:209-223
    DOI: 10.1016/j.ress.2017.08.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832017303307
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2017.08.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Gao, Xueli & Barabady, Javad & Markeset, Tore, 2010. "An approach for prediction of petroleum production facility performance considering Arctic influence factors," Reliability Engineering and System Safety, Elsevier, vol. 95(8), pages 837-846.
    2. Louit, D.M. & Pascual, R. & Jardine, A.K.S., 2009. "A practical procedure for the selection of time-to-failure models based on the assessment of trends in maintenance data," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1618-1628.
    3. J. I. Ansell & M. J. Phillips, 1989. "Practical Problems in the Statistical Analysis of Reliability Data," Journal of the Royal Statistical Society Series C, Royal Statistical Society, vol. 38(2), pages 205-231, June.
    4. Barker, Kash & Baroud, Hiba, 2014. "Proportional hazards models of infrastructure system recovery," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 201-206.
    5. Henry, Devanandham & Emmanuel Ramirez-Marquez, Jose, 2012. "Generic metrics and quantitative approaches for system resilience as a function of time," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 114-122.
    6. Garmabaki, A.H.S. & Ahmadi, Alireza & Block, Jan & Pham, Hoang & Kumar, Uday, 2016. "A reliability decision framework for multiple repairable units," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 78-88.
    7. Barabadi, Abbas & Barabady, Javad & Markeset, Tore, 2011. "Maintainability analysis considering time-dependent and time-independent covariates," Reliability Engineering and System Safety, Elsevier, vol. 96(1), pages 210-217.
    8. Kumar, Dhananjay & Westberg, Ulf, 1997. "Maintenance scheduling under age replacement policy using proportional hazards model and TTT-plotting," European Journal of Operational Research, Elsevier, vol. 99(3), pages 507-515, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Albara M. Mustafa & Abbas Barabadi, 2021. "Resilience Assessment of Wind Farms in the Arctic with the Application of Bayesian Networks," Energies, MDPI, vol. 14(15), pages 1-15, July.
    2. Cao, Quoc Dung & Miles, Scott B. & Choe, Youngjun, 2022. "Infrastructure recovery curve estimation using Gaussian process regression on expert elicited data," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    3. Ghaneshvar Ramineni & Nafiseh Ghorbani-Renani & Kash Barker & Andrés D. González & Talayeh Razzaghi & Sridhar Radhakrishnan, 2023. "Machine learning approaches to modeling interdependent network restoration time," Environment Systems and Decisions, Springer, vol. 43(1), pages 22-35, March.
    4. Park, Jaehun & Lee, Byung Kwon, 2020. "Liner-dedicated manageability estimation for port operational reliability," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    5. Opabola, Eyitayo A. & Galasso, Carmine, 2024. "A probabilistic framework for post-disaster recovery modeling of buildings and electric power networks in developing countries," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    6. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Zhu, Chunli & Wu, Jianping & Liu, Mingyu & Wang, Linyang & Li, Duowei & Kouvelas, Anastasios, 2021. "Recovery preparedness of global air transport influenced by COVID-19 pandemic: Policy intervention analysis," Transport Policy, Elsevier, vol. 106(C), pages 54-63.
    8. Xu, Min & Li, Guoyuan & Chen, Anthony, 2024. "Resilience-driven post-disaster restoration of interdependent infrastructure systems under different decision-making environments," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Caputo, Antonio C. & Kalemi, Bledar & Paolacci, Fabrizio & Corritore, Daniele, 2020. "Computing resilience of process plants under Na-Tech events: Methodology and application to sesmic loading scenarios," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    10. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "The Resilience of Critical Infrastructure Systems: A Systematic Literature Review," Energies, MDPI, vol. 14(6), pages 1-32, March.
    11. Lee, Seulbi & Choi, Minji & Lee, Hyun-Soo & Park, Moonseo, 2020. "Bayesian network-based seismic damage estimation for power and potable water supply systems," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    12. Farahmand, Hamed & Liu, Xueming & Dong, Shangjia & Mostafavi, Ali & Gao, Jianxi, 2022. "A Network Observability Framework for Sensor Placement in Flood Control Networks to Improve Flood Situational Awareness and Risk Management," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    13. Siqing Shan & Feng Zhao, 2023. "Social media-based urban disaster recovery and resilience analysis of the Henan deluge," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 118(1), pages 377-405, August.
    14. Nozhati, Saeed & Sarkale, Yugandhar & Ellingwood, Bruce & K.P. Chong, Edwin & Mahmoud, Hussam, 2019. "Near-optimal planning using approximate dynamic programming to enhance post-hazard community resilience management," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 116-126.
    15. Yonas Zewdu Ayele & Mostafa Aliyari & David Griffiths & Enrique Lopez Droguett, 2020. "Automatic Crack Segmentation for UAV-Assisted Bridge Inspection," Energies, MDPI, vol. 13(23), pages 1-16, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rezgar Zaki & Abbas Barabadi & Javad Barabady & Ali Nouri Qarahasanlou, 2022. "Observed and unobserved heterogeneity in failure data analysis," Journal of Risk and Reliability, , vol. 236(1), pages 194-207, February.
    2. Ali N Qarahasanlou & Abbas Barabadi & Yonas Z Ayele, 2018. "Production performance analysis during operation phase: A case study," Journal of Risk and Reliability, , vol. 232(6), pages 559-575, December.
    3. Ali Nouri Qarahasanlou & Ali Zamani & Abbas Barabadi & Mahdi Mokhberdoran, 2021. "Resilience Assessment: A Performance-Based Importance Measure," Energies, MDPI, vol. 14(22), pages 1-16, November.
    4. Luo, Xu & Ge, Zhexue & Zhang, ShiGang & Yang, Yongmin, 2021. "A method for the maintainability evaluation at design stage using maintainability design attributes," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    5. Braglia, Marcello & Carmignani, Gionata & Frosolini, Marco & Zammori, Francesco, 2012. "Data classification and MTBF prediction with a multivariate analysis approach," Reliability Engineering and System Safety, Elsevier, vol. 97(1), pages 27-35.
    6. Wang, Shixuan & Syntetos, Aris A. & Liu, Ying & Di Cairano-Gilfedder, Carla & Naim, Mohamed M., 2023. "Improving automotive garage operations by categorical forecasts using a large number of variables," European Journal of Operational Research, Elsevier, vol. 306(2), pages 893-908.
    7. Mottahedi, Adel & Sereshki, Farhang & Ataei, Mohammad & Qarahasanlou, Ali Nouri & Barabadi, Abbas, 2021. "Resilience estimation of critical infrastructure systems: Application of expert judgment," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Barabadi, Abbas & Tobias Gudmestad, Ove & Barabady, Javad, 2015. "RAMS data collection under Arctic conditions," Reliability Engineering and System Safety, Elsevier, vol. 135(C), pages 92-99.
    9. Hamzeh Soltanali & A.H.S Garmabaki & Adithya Thaduri & Aditya Parida & Uday Kumar & Abbas Rohani, 2019. "Sustainable production process: An application of reliability, availability, and maintainability methodologies in automotive manufacturing," Journal of Risk and Reliability, , vol. 233(4), pages 682-697, August.
    10. Naseri, Masoud & Baraldi, Piero & Compare, Michele & Zio, Enrico, 2016. "Availability assessment of oil and gas processing plants operating under dynamic Arctic weather conditions," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 66-82.
    11. Caputo, Antonio C. & Kalemi, Bledar & Paolacci, Fabrizio & Corritore, Daniele, 2020. "Computing resilience of process plants under Na-Tech events: Methodology and application to sesmic loading scenarios," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    12. Payuna Uday & Karen Marais, 2015. "Designing Resilient Systems‐of‐Systems: A Survey of Metrics, Methods, and Challenges," Systems Engineering, John Wiley & Sons, vol. 18(5), pages 491-510, October.
    13. Opabola, Eyitayo A. & Galasso, Carmine, 2024. "A probabilistic framework for post-disaster recovery modeling of buildings and electric power networks in developing countries," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    14. Slimacek, Vaclav & Lindqvist, Bo Henry, 2017. "Nonhomogeneous Poisson process with nonparametric frailty and covariates," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 75-83.
    15. Barker, Kash & Baroud, Hiba, 2014. "Proportional hazards models of infrastructure system recovery," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 201-206.
    16. Izquierdo, J. & Crespo Márquez, A. & Uribetxebarria, J., 2019. "Dynamic artificial neural network-based reliability considering operational context of assets," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 483-493.
    17. Rezgar Zaki & Abbas Barabadi & Ali Nouri Qarahasanlou & A. H. S. Garmabaki, 2019. "A mixture frailty model for maintainability analysis of mechanical components: a case study," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 10(6), pages 1646-1653, December.
    18. Adel Mottahedi & Farhang Sereshki & Mohammad Ataei & Ali Nouri Qarahasanlou & Abbas Barabadi, 2021. "Resilience analysis: A formulation to model risk factors on complex system resilience," International Journal of System Assurance Engineering and Management, Springer;The Society for Reliability, Engineering Quality and Operations Management (SREQOM),India, and Division of Operation and Maintenance, Lulea University of Technology, Sweden, vol. 12(5), pages 871-883, October.
    19. Carlos Parra & Adolfo Crespo & Fredy Kristjanpoller & Pablo Viveros, 2012. "Stochastic model of reliability for use in the evaluation of the economic impact of a failure using life cycle cost analysis. Case studies on the rail freight and oil industries," Journal of Risk and Reliability, , vol. 226(4), pages 392-405, August.
    20. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:169:y:2018:i:c:p:209-223. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.