IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v234y2023ics0951832023000613.html
   My bibliography  Save this article

On system reliability for time-varying structure

Author

Listed:
  • Cui, L.X.
  • Du, Yi-Mu
  • Sun, C.P.

Abstract

In reliability theory, the aging of a multi-state system is dominated by both the components and the corresponding structure functions. In previous studies, structures are usually assumed to be static, and thus the time-independent structure functions are utilized. However, due to the complex nature of aging, the structure could also vary with time, which may lead to unsatisfactory assessment reliability with the static structure-based analysis. The current investigation provides a universal approach to assessing the reliability of complex systems with time-varying structures. An open-system model is introduced to broaden the logic method of the system reliability. The analysis of open-system model implies that structure functions are probabilistically described by the time-varying structure distributions, which are the fine graining of the conditional probabilistic tables (CPTs) of the Bayesian networks. The aging of components and the time-varying structures are integrated into a probabilistic graphical model together, which is put forth to assess the time-varying reliability of complex systems. A general algorithm based on expectation–maximization (EM) for various dynamic processes for components and system structures is obtained. Two specific processes, e.g., Markov and Weibull, are studied in detail. Three examples are presented to illustrate the proposed approach and give a deeper understanding of time-varying structures.

Suggested Citation

  • Cui, L.X. & Du, Yi-Mu & Sun, C.P., 2023. "On system reliability for time-varying structure," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:reensy:v:234:y:2023:i:c:s0951832023000613
    DOI: 10.1016/j.ress.2023.109146
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023000613
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109146?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zio, E., 2009. "Reliability engineering: Old problems and new challenges," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 125-141.
    2. Graves, T.L. & Hamada, M.S. & Klamann, R. & Koehler, A. & Martz, H.F., 2007. "A fully Bayesian approach for combining multi-level information in multi-state fault tree quantification," Reliability Engineering and System Safety, Elsevier, vol. 92(10), pages 1476-1483.
    3. Merle, G. & Roussel, J.-M. & Lesage, J.-J., 2011. "Algebraic determination of the structure function of Dynamic Fault Trees," Reliability Engineering and System Safety, Elsevier, vol. 96(2), pages 267-277.
    4. Yuan, Kai & Xiao, Ning-Cong & Wang, Zhonglai & Shang, Kun, 2020. "System reliability analysis by combining structure function and active learning kriging model," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    5. Coolen, Frank P.A. & Coolen-Maturi, Tahani, 2016. "The structure function for system reliability as predictive (imprecise) probability," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 180-187.
    6. Jung, Yongsu & Jo, Hwisang & Choo, Jeonghwan & Lee, Ikjin, 2022. "Statistical model calibration and design optimization under aleatory and epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Louis J. M. Aslett & Frank P. A. Coolen & Simon P. Wilson, 2015. "Bayesian Inference for Reliability of Systems and Networks Using the Survival Signature," Risk Analysis, John Wiley & Sons, vol. 35(9), pages 1640-1651, September.
    8. Nannapaneni, Saideep & Mahadevan, Sankaran, 2016. "Reliability analysis under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 155(C), pages 9-20.
    9. Zheng, Yi-Xuan & Xiahou, Tangfan & Liu, Yu & Xie, Chaoyang, 2021. "Structure function learning of hierarchical multi-state systems with incomplete observation sequences," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Taghipour, Sharareh & Banjevic, Dragan, 2011. "Trend analysis of the power law process using Expectation–Maximization algorithm for data censored by inspection intervals," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1340-1348.
    11. Volkanovski, Andrija & ÄŒepin, Marko & Mavko, Borut, 2009. "Application of the fault tree analysis for assessment of power system reliability," Reliability Engineering and System Safety, Elsevier, vol. 94(6), pages 1116-1127.
    12. Qin, Jinlei & Coolen, Frank P.A., 2022. "Survival signature for reliability evaluation of a multi-state system with multi-state components," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    13. Zhang, Yanping & Cai, Baoping & Liu, Yiliu & Jiang, Qiangqiang & Li, Wenchao & Feng, Qiang & Liu, Yonghong & Liu, Guijie, 2021. "Resilience assessment approach of mechanical structure combining finite element models and dynamic Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Yang, Xufeng & Liu, Yongshou & Mi, Caiying & Tang, Chenghu, 2018. "System reliability analysis through active learning Kriging model with truncated candidate region," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 235-241.
    15. Wu, Jianing & Yan, Shaoze & Zuo, Ming J., 2016. "Evaluating the reliability of multi-body mechanisms: A method considering the uncertainties of dynamic performance," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 96-106.
    16. Langseth, Helge & Portinale, Luigi, 2007. "Bayesian networks in reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 92-108.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Yi-Xuan & Xiahou, Tangfan & Liu, Yu & Xie, Chaoyang, 2021. "Structure function learning of hierarchical multi-state systems with incomplete observation sequences," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    2. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.
    3. Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Wang, Jian & Sun, Zhili & Cao, Runan, 2021. "An efficient and robust Kriging-based method for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Yılmaz, Emre & German, Brian J. & Pritchett, Amy R., 2023. "Optimizing resource allocations to improve system reliability via the propagation of statistical moments through fault trees," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    6. Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    8. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    9. Wang, Jiaqi & Zhang, Limao & Yang, Hui & Liu, Huabei & Skibniewski, Mirosław J., 2024. "Dynamic reliability analysis of Aerial Building Machine under extreme wind loads using improved QBDC-based active learning," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    10. Babaleye, Ahmed O. & Kurt, Rafet Emek & Khan, Faisal, 2019. "Safety analysis of plugging and abandonment of oil and gas wells in uncertain conditions with limited data," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 133-141.
    11. Zhang, Jinhao & Gao, Liang & Xiao, Mi, 2020. "A composite-projection-outline-based approximation method for system reliability analysis with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Shi, Yan & Behrensdorf, Jasper & Zhou, Jiayan & Hu, Yue & Broggi, Matteo & Beer, Michael, 2024. "Network reliability analysis through survival signature and machine learning techniques," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    13. Penttinen, Jussi-Pekka & Niemi, Arto & Gutleber, Johannes & Koskinen, Kari T. & Coatanéa, Eric & Laitinen, Jouko, 2019. "An open modelling approach for availability and reliability of systems," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 387-399.
    14. Xiahou, Tangfan & Zheng, Yi-Xuan & Liu, Yu & Chen, Hong, 2023. "Reliability modeling of modular k-out-of-n systems with functional dependency: A case study of radar transmitter systems," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    15. Yontay, Petek & Pan, Rong, 2016. "A computational Bayesian approach to dependency assessment in system reliability," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 104-114.
    16. Huang, Shi-Ya & Zhang, Shao-He & Liu, Lei-Lei, 2022. "A new active learning Kriging metamodel for structural system reliability analysis with multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    17. Xu, Jintao & Gui, Maolei & Ding, Rui & Dai, Tao & Zheng, Mengyan & Men, Xinhong & Meng, Fanpeng & Yu, Tao & Sui, Yang, 2023. "A new approach for dynamic reliability analysis of reactor protection system for HPR1000," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    18. Moustapha, Maliki & Parisi, Pietro & Marelli, Stefano & Sudret, Bruno, 2024. "Reliability analysis of arbitrary systems based on active learning and global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    19. Yuan, Kai & Xiao, Ning-Cong & Wang, Zhonglai & Shang, Kun, 2020. "System reliability analysis by combining structure function and active learning kriging model," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    20. Jiang, Chen & Qiu, Haobo & Gao, Liang & Wang, Dapeng & Yang, Zan & Chen, Liming, 2020. "EEK-SYS: System reliability analysis through estimation error-guided adaptive Kriging approximation of multiple limit state surfaces," Reliability Engineering and System Safety, Elsevier, vol. 198(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:234:y:2023:i:c:s0951832023000613. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.