IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v302y2022i3p1079-1096.html
   My bibliography  Save this article

A dynamic “predict, then optimize” preventive maintenance approach using operational intervention data

Author

Listed:
  • van Staden, Heletjé E.
  • Deprez, Laurens
  • Boute, Robert N.

Abstract

We investigate whether historical machine failures and maintenance records may be used to derive future machine failure estimates and, in turn, prescribe advancements of scheduled preventive maintenance interventions. We model the problem using a sequential predict, then optimize approach. In our prescriptive optimization model, we use a finite horizon Markov decision process with a variable order Markov chain, in which the chain length varies depending on the time since the last preventive maintenance action was performed. The model therefore captures the dependency of a machine’s failures on both recent failures as well as preventive maintenance actions, via our prediction model. We validate our model using an original equipment manufacturer data set and obtain policies that prescribe when to deviate from the planned periodic maintenance schedule. To improve our predictions for machine failure behavior with limited to no past data, we pool our data set over different machine classes by means of a Poisson generalized linear model. We find that our policies can supplement and improve on those currently applied by 5%, on average.

Suggested Citation

  • van Staden, Heletjé E. & Deprez, Laurens & Boute, Robert N., 2022. "A dynamic “predict, then optimize” preventive maintenance approach using operational intervention data," European Journal of Operational Research, Elsevier, vol. 302(3), pages 1079-1096.
  • Handle: RePEc:eee:ejores:v:302:y:2022:i:3:p:1079-1096
    DOI: 10.1016/j.ejor.2022.01.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221722000765
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2022.01.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fabio Sgarbossa & Ilenia Zennaro & Eleonora Florian & Martina Calzavara, 2020. "Age replacement policy in the case of no data: the effect of Weibull parameter estimation," International Journal of Production Research, Taylor & Francis Journals, vol. 58(19), pages 5851-5869, October.
    2. Zhu, Qiushi & Peng, Hao & Timmermans, Bas & van Houtum, Geert-Jan, 2017. "A condition-based maintenance model for a single component in a system with scheduled and unscheduled downs," International Journal of Production Economics, Elsevier, vol. 193(C), pages 365-380.
    3. Velibor V. Miv{s}i'c & Georgia Perakis, 2019. "Data Analytics in Operations Management: A Review," Papers 1905.00556, arXiv.org.
    4. Michael Jong Kim & Viliam Makis, 2013. "Joint Optimization of Sampling and Control of Partially Observable Failing Systems," Operations Research, INFORMS, vol. 61(3), pages 777-790, June.
    5. Poppe, Joeri & Boute, Robert N. & Lambrecht, Marc R., 2018. "A hybrid condition-based maintenance policy for continuously monitored components with two degradation thresholds," European Journal of Operational Research, Elsevier, vol. 268(2), pages 515-532.
    6. C. Drent & S. Kapodistria & J. A. C. Resing, 2019. "Condition-based maintenance policies under imperfect maintenance at scheduled and unscheduled opportunities," Queueing Systems: Theory and Applications, Springer, vol. 93(3), pages 269-308, December.
    7. Lopez, Olivier, 2019. "A censored copula model for micro-level claim reserving," Insurance: Mathematics and Economics, Elsevier, vol. 87(C), pages 1-14.
    8. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    9. Richard Barlow & Larry Hunter, 1960. "Optimum Preventive Maintenance Policies," Operations Research, INFORMS, vol. 8(1), pages 90-100, February.
    10. van Staden, Heletjé E. & Boute, Robert N., 2021. "The effect of multi-sensor data on condition-based maintenance policies," European Journal of Operational Research, Elsevier, vol. 290(2), pages 585-600.
    11. Regattieri, A. & Manzini, R. & Battini, D., 2010. "Estimating reliability characteristics in the presence of censored data: A case study in a light commercial vehicle manufacturing system," Reliability Engineering and System Safety, Elsevier, vol. 95(10), pages 1093-1102.
    12. van Oosterom, C.D. & Elwany, A.H. & Çelebi, D. & van Houtum, G.J., 2014. "Optimal policies for a delay time model with postponed replacement," European Journal of Operational Research, Elsevier, vol. 232(1), pages 186-197.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zheng, Meimei & Lin, Jie & Xia, Tangbin & Liu, Yu & Pan, Ershun, 2023. "Joint condition-based maintenance and spare provisioning policy for a K-out-of-N system with failures during inspection intervals," European Journal of Operational Research, Elsevier, vol. 308(3), pages 1220-1232.
    2. Sachini Weerasekara & Zhenyuan Lu & Burcu Ozek & Jacqueline Isaacs & Sagar Kamarthi, 2022. "Trends in Adopting Industry 4.0 for Asset Life Cycle Management for Sustainability: A Keyword Co-Occurrence Network Review and Analysis," Sustainability, MDPI, vol. 14(19), pages 1-15, September.
    3. Dursun, İpek & Akçay, Alp & van Houtum, Geert-Jan, 2022. "Data pooling for multiple single-component systems under population heterogeneity," International Journal of Production Economics, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kampitsis, Dimitris & Panagiotidou, Sofia, 2022. "A Bayesian condition-based maintenance and monitoring policy with variable sampling intervals," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    2. Vanderschueren, Toon & Boute, Robert & Verdonck, Tim & Baesens, Bart & Verbeke, Wouter, 2023. "Optimizing the preventive maintenance frequency with causal machine learning," International Journal of Production Economics, Elsevier, vol. 258(C).
    3. van Staden, Heletjé E. & Boute, Robert N., 2021. "The effect of multi-sensor data on condition-based maintenance policies," European Journal of Operational Research, Elsevier, vol. 290(2), pages 585-600.
    4. Akcay, Alp, 2022. "An alert-assisted inspection policy for a production process with imperfect condition signals," European Journal of Operational Research, Elsevier, vol. 298(2), pages 510-525.
    5. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    6. Zhou, Xiaojun & Ning, Xiaohan, 2021. "Maintenance gravity window based opportunistic maintenance scheduling for multi-unit serial systems with stochastic production waits," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Zhao, Yunfei & Smidts, Carol, 2022. "Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    8. Asadi, Majid, 2023. "On a parametric model for the mean number of system repairs with applications," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Alotaibi, Naif M. & Scarf, Philip & Cavalcante, Cristiano A.V. & Lopes, Rodrigo S. & de Oliveira e Silva, André Luiz & Rodrigues, Augusto J.S. & Alyami, Salem A., 2023. "Modified-opportunistic inspection and the case of remote, groundwater well-heads," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Andersen, Jesper Fink & Andersen, Anders Reenberg & Kulahci, Murat & Nielsen, Bo Friis, 2022. "A numerical study of Markov decision process algorithms for multi-component replacement problems," European Journal of Operational Research, Elsevier, vol. 299(3), pages 898-909.
    11. Fecarotti, Claudia & Andrews, John & Pesenti, Raffaele, 2021. "A mathematical programming model to select maintenance strategies in railway networks," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Duan, Chaoqun & Makis, Viliam & Deng, Chao, 2020. "A two-level Bayesian early fault detection for mechanical equipment subject to dependent failure modes," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    14. Deprez, Laurens & Antonio, Katrien & Boute, Robert, 2021. "Pricing service maintenance contracts using predictive analytics," European Journal of Operational Research, Elsevier, vol. 290(2), pages 530-545.
    15. Azizi, Fariba & Salari, Nooshin, 2023. "A novel condition-based maintenance framework for parallel manufacturing systems based on bivariate birth/birth–death processes," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    16. Kivanç, İpek & Fecarotti, Claudia & Raassens, Néomie & van Houtum, Geert-Jan, 2024. "A scalable multi-objective maintenance optimization model for systems with multiple heterogeneous components and a finite lifespan," European Journal of Operational Research, Elsevier, vol. 315(2), pages 567-579.
    17. da Costa, Paulo & Verleijsdonk, Peter & Voorberg, Simon & Akcay, Alp & Kapodistria, Stella & van Jaarsveld, Willem & Zhang, Yingqian, 2023. "Policies for the dynamic traveling maintainer problem with alerts," European Journal of Operational Research, Elsevier, vol. 305(3), pages 1141-1152.
    18. Castro, Inma T. & Basten, Rob J.I. & van Houtum, Geert-Jan, 2020. "Maintenance cost evaluation for heterogeneous complex systems under continuous monitoring," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    19. Vincent F. Yu & Thi Huynh Anh Le & Tai-Sheng Su & Shih-Wei Lin, 2021. "Optimal Maintenance Policy for Offshore Wind Systems," Energies, MDPI, vol. 14(19), pages 1-19, September.
    20. Liu, Xingchen & Sun, Qiuzhuang & Ye, Zhi-Sheng & Yildirim, Murat, 2021. "Optimal multi-type inspection policy for systems with imperfect online monitoring," Reliability Engineering and System Safety, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:302:y:2022:i:3:p:1079-1096. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.