IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v177y2018icp68-79.html
   My bibliography  Save this article

Statistical modeling of tree failures during storms

Author

Listed:
  • Kabir, Elnaz
  • Guikema, Seth
  • Kane, Brian

Abstract

The failure of trees during storms imposes strong economic and societal costs. Statistical modeling for predicting the probability of a tree failing during storms has the potential to help improve tree risk management. The purpose of this study is to explore the potential predictability of tree failure using advanced predictive modeling approach. These models also have broader applicability for modeling failures of technical systems during adverse weather events. To train and test models, we use a data set from a real case study in Massachusetts, USA. We compare the out-of-sample predictive accuracy of several machine learning models including logistic regression, classification and regression trees, multivariate adaptive regression splines, artificial neural network, naive-Bayes regression, random forest, boosting, and an ensemble model of boosting and random forest. Our results demonstrate that the ensemble model of boosting and random forest achieves the best prediction accuracy in predicting the failure probability of trees for the case study storm. Our results can help tree care professionals make better decisions to reduce the risk of tree failure prior to the storm.

Suggested Citation

  • Kabir, Elnaz & Guikema, Seth & Kane, Brian, 2018. "Statistical modeling of tree failures during storms," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 68-79.
  • Handle: RePEc:eee:reensy:v:177:y:2018:i:c:p:68-79
    DOI: 10.1016/j.ress.2018.04.026
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183201730707X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2018.04.026?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sullivan, K.B. & Feigh, K.M. & Mappus, R. & Durso, F.T. & Fischer, U. & Pop, V. & Mosier, K.L. & Morrow, D.G., 2013. "Using neural networks to assess flight deck human–automation interaction," Reliability Engineering and System Safety, Elsevier, vol. 114(C), pages 26-35.
    2. Reder, Maik & Yürüşen, Nurseda Y. & Melero, Julio J., 2018. "Data-driven learning framework for associating weather conditions and wind turbine failures," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 554-569.
    3. Robert O’brien, 2007. "A Caution Regarding Rules of Thumb for Variance Inflation Factors," Quality & Quantity: International Journal of Methodology, Springer, vol. 41(5), pages 673-690, October.
    4. Silva, Joaquim F. & Jacinto, Celeste, 2012. "Finding occupational accident patterns in the extractive industry using a systematic data mining approach," Reliability Engineering and System Safety, Elsevier, vol. 108(C), pages 108-122.
    5. Pourgol-Mohamad, Mohammad & Mosleh, Ali & Modarres, Mohammad, 2010. "Methodology for the use of experimental data to enhance model output uncertainty assessment in thermal hydraulics codes," Reliability Engineering and System Safety, Elsevier, vol. 95(2), pages 77-86.
    6. Thomas Schmidlin, 2009. "Human fatalities from wind-related tree failures in the United States, 1995–2007," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 50(1), pages 13-25, July.
    7. Li, Xiang & Ding, Qian & Sun, Jian-Qiao, 2018. "Remaining useful life estimation in prognostics using deep convolution neural networks," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 1-11.
    8. Guikema, S.D. & Quiring, S.M., 2012. "Hybrid data mining-regression for infrastructure risk assessment based on zero-inflated data," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 178-182.
    9. Hu, Chao & Youn, Byeng D. & Wang, Pingfeng & Taek Yoon, Joung, 2012. "Ensemble of data-driven prognostic algorithms for robust prediction of remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 120-135.
    10. Zhao, Wei & Fan, Feng & Wang, Wei, 2017. "Non-linear partial least squares response surface method for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 69-77.
    11. Regattieri, A. & Manzini, R. & Battini, D., 2010. "Estimating reliability characteristics in the presence of censored data: A case study in a light commercial vehicle manufacturing system," Reliability Engineering and System Safety, Elsevier, vol. 95(10), pages 1093-1102.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Xiaoyi & Lu, Pan & Zheng, Zijian & Tolliver, Denver & Keramati, Amin, 2020. "Accident Prediction Accuracy Assessment for Highway-Rail Grade Crossings Using Random Forest Algorithm Compared with Decision Tree," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    2. Ngandu Balekelayi & Solomon Tesfamariam, 2020. "Geoadditive Quantile Regression Model for Sewer Pipes Deterioration Using Boosting Optimization Algorithm," Sustainability, MDPI, vol. 12(20), pages 1-24, October.
    3. Abbie Judice & Jason Gordon & Jesse Abrams & Kris Irwin, 2021. "Community Perceptions of Tree Risk and Management," Land, MDPI, vol. 10(10), pages 1-19, October.
    4. Simsekler, Mecit Can Emre & Qazi, Abroon & Alalami, Mohammad Amjad & Ellahham, Samer & Ozonoff, Al, 2020. "Evaluation of patient safety culture using a random forest algorithm," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    5. Chi, Guotai & Dong, Bingjie & Zhou, Ying & Jin, Peng, 2024. "Long-horizon predictions of credit default with inconsistent customers," Technological Forecasting and Social Change, Elsevier, vol. 198(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhu, Yongmeng & Wu, Jiechang & Wu, Jun & Liu, Shuyong, 2022. "Dimensionality reduce-based for remaining useful life prediction of machining tools with multisensor fusion," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    2. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    3. Berndt Jesenko & Christian Schlögl, 2021. "The effect of web of science subject categories on clustering: the case of data-driven methods in business and economic sciences," Scientometrics, Springer;Akadémiai Kiadó, vol. 126(8), pages 6785-6801, August.
    4. Jain, Amit Kumar & Lad, Bhupesh Kumar, 2020. "Prognosticating RULs while exploiting the future characteristics of operating profiles," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    5. Manuel Arias Chao & Chetan Kulkarni & Kai Goebel & Olga Fink, 2021. "Aircraft Engine Run-to-Failure Dataset under Real Flight Conditions for Prognostics and Diagnostics," Data, MDPI, vol. 6(1), pages 1-14, January.
    6. Yu, Wennian & Kim, II Yong & Mechefske, Chris, 2020. "An improved similarity-based prognostic algorithm for RUL estimation using an RNN autoencoder scheme," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    7. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    8. Hou, Hui & Liu, Chao & Wei, Ruizeng & He, Huan & Wang, Lei & Li, Weibo, 2023. "Outage duration prediction under typhoon disaster with stacking ensemble learning," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    9. Rajkumar Bhimgonda Patil & Basavraj S Kothavale & Laxman Yadu Waghmode, 2019. "Selection of time-to-failure model for computerized numerical control turning center based on the assessment of trends in maintenance data," Journal of Risk and Reliability, , vol. 233(2), pages 105-117, April.
    10. Lin, Yan-Hui & Chang, Liang & Guan, Lu-Xin, 2024. "Enhanced stochastic recurrent hybrid model for RUL Predictions via Semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    11. Zhai, Chengwei & Chen, Thomas Ying-jeh & White, Anna Grace & Guikema, Seth David, 2021. "Power outage prediction for natural hazards using synthetic power distribution systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    12. Li, Yuanfu & Chen, Yifan & Shao, Haonan & Zhang, Huisheng, 2023. "A novel dual attention mechanism combined with knowledge for remaining useful life prediction based on gated recurrent units," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    13. Xiao, Lei & Tang, Junxuan & Zhang, Xinghui & Bechhoefer, Eric & Ding, Siyi, 2021. "Remaining useful life prediction based on intentional noise injection and feature reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    14. Wang, Anqi & Pei, Yan & Qian, Zheng & Zareipour, Hamidreza & Jing, Bo & An, Jiayi, 2022. "A two-stage anomaly decomposition scheme based on multi-variable correlation extraction for wind turbine fault detection and identification," Applied Energy, Elsevier, vol. 321(C).
    15. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    16. Marcin Witczak & Marcin Mrugalski & Bogdan Lipiec, 2021. "Remaining Useful Life Prediction of MOSFETs via the Takagi–Sugeno Framework," Energies, MDPI, vol. 14(8), pages 1-23, April.
    17. Dorota Ciolek, 2011. "Metody identyfikacji efektow zewnetrznych funkcjonowania klastrów przemyslowych," Working Papers of Economics of European Integration Division 1103, The Univeristy of Gdansk, Faculty of Economics, Economics of European Integration Division.
    18. Arezoo Amirpourabasi & Mohammad Pourgol-Mohammad & Hanieh Niroomand-Oscuii, 2017. "Reliability Evaluation for Biomedical Systems: Case Study of a Biological Cell Freezing," Current Trends in Biomedical Engineering & Biosciences, Juniper Publishers Inc., vol. 6(3), pages 45-52, July.
    19. Liu, Lu & Song, Xiao & Zhou, Zhetao, 2022. "Aircraft engine remaining useful life estimation via a double attention-based data-driven architecture," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    20. Zheng, Xiujuan & Fang, Huajing, 2015. "An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 74-82.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:177:y:2018:i:c:p:68-79. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.