Federated Transfer Fault Diagnosis Method Based on Variational Auto-Encoding with Few-Shot Learning
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhang, Wei & Wang, Ziwei & Li, Xiang, 2023. "Blockchain-based decentralized federated transfer learning methodology for collaborative machinery fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Shuai Hou & Jizhe Lu & Enguo Zhu & Hailong Zhang & Aliaosha Ye & Zhihan Lv, 2022. "A Federated Learning-Based Fault Detection Algorithm for Power Terminals," Mathematical Problems in Engineering, Hindawi, vol. 2022, pages 1-10, July.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Ihab Assoun & Lahoucine Idkhajine & Babak Nahid-Mobarakeh & Farid Meibody-Tabar & Eric Monmasson & Nicolas Pacault, 2022. "Wide-Speed Range Sensorless Control of Five-Phase PMSM Drive under Healthy and Open Phase Fault Conditions for Aerospace Applications," Energies, MDPI, vol. 16(1), pages 1-18, December.
- Wang, Lijin & Fan, Weipeng & Jiang, Guoqian & Xie, Ping, 2023. "An efficient federated transfer learning framework for collaborative monitoring of wind turbines in IoE-enabled wind farms," Energy, Elsevier, vol. 284(C).
- Chen, Xi & Wang, Hui & Lu, Siliang & Xu, Jiawen & Yan, Ruqiang, 2023. "Remaining useful life prediction of turbofan engine using global health degradation representation in federated learning," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Ding, Peng & Zhao, Xiaoli & Shao, Haidong & Jia, Minping, 2023. "Machinery cross domain degradation prognostics considering compound domain shifts," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Zhao, Ke & Hu, Junchen & Shao, Haidong & Hu, Jiabei, 2023. "Federated multi-source domain adversarial adaptation framework for machinery fault diagnosis with data privacy," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
More about this item
Keywords
federated transfer learning; fault diagnosis; few-shot learning; variational auto-encoding; data privacy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jmathe:v:12:y:2024:i:13:p:2142-:d:1431005. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.