IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v242y2024ics0951832023006282.html
   My bibliography  Save this article

Optimal sensor placement for permanent magnet synchronous motor condition monitoring using a digital twin-assisted fault diagnosis approach

Author

Listed:
  • Kohtz, Sara
  • Zhao, Junhan
  • Renteria, Anabel
  • Lalwani, Anand
  • Xu, Yanwen
  • Zhang, Xiaolong
  • Haran, Kiruba Sivasubramaniam
  • Senesky, Debbie
  • Wang, Pingfeng

Abstract

Efficient health monitoring for identifying and quantifying damages can substantially improve the performance and structural integrity of engineered systems. Specifically, new advances in sensing technologies have pushed the research of large sensor networks to monitor complex mechanical structures. Given the need for health state monitoring, designing an optimal sensor framework with accurate detectability of failure modes has great significance. However, there is often little to no experimental data available for newly proposed mechanical systems; so a digital-twin method would make fault detection feasible for this applications. In this paper, a data-driven reliability-based design optimization (RBDO) approach is employed for sensor placement and fault detection of a permanent magnet synchronous motor (PMSM), which is a relatively new system for high power engineering applications. This system suffers from inter-turn and inter-phase short-winding faults, which can cause catastrophic failure of the whole structure. For PMSMs, current sensing and magnetic field sensing can be utilized for the detection of faults, but actual sensor placement has not been considered in recent literature. In this study, the first step is to create an FEA model of the PMSM for the simulation of faults, which serves as the digital twin. Next, a data-driven approach is implemented for sensor placement and classification of faults. The proposed method utilizes distance clustering for identification of various failure modes, which is suitable for many applications due to its high accuracy and computational efficiency. In addition, a genetic algorithm is implemented to determine the minimum number and optimal placement of sensors. This framework simultaneously searches for the optimal placement of sensors while training the classifier for detectability of system health states. Ultimately, the proposed methodology shows convergence to a solution with high accuracy for detection of faults, and is demonstrated on the novel system of a PMSM with magnetic field sensors.

Suggested Citation

  • Kohtz, Sara & Zhao, Junhan & Renteria, Anabel & Lalwani, Anand & Xu, Yanwen & Zhang, Xiaolong & Haran, Kiruba Sivasubramaniam & Senesky, Debbie & Wang, Pingfeng, 2024. "Optimal sensor placement for permanent magnet synchronous motor condition monitoring using a digital twin-assisted fault diagnosis approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
  • Handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006282
    DOI: 10.1016/j.ress.2023.109714
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023006282
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109714?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xia, Pengcheng & Huang, Yixiang & Tao, Zhiyu & Liu, Chengliang & Liu, Jie, 2023. "A digital twin-enhanced semi-supervised framework for motor fault diagnosis based on phase-contrastive current dot pattern," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    2. Guo, Junchao & He, Qingbo & Zhen, Dong & Gu, Fengshou & Ball, Andrew D., 2023. "Multi-sensor data fusion for rotating machinery fault detection using improved cyclic spectral covariance matrix and motor current signal analysis," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Wang, Mengmeng & Incecik, Atilla & Feng, Shizhe & Gupta, M.K. & Królczyk, Grzegorz & Li, Z, 2023. "Damage identification of offshore jacket platforms in a digital twin framework considering optimal sensor placement," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Farahmand, Hamed & Liu, Xueming & Dong, Shangjia & Mostafavi, Ali & Gao, Jianxi, 2022. "A Network Observability Framework for Sensor Placement in Flood Control Networks to Improve Flood Situational Awareness and Risk Management," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Keke & Tao, Shijun & Wu, Dehao & Yang, Chunhua & Gui, Weihua, 2024. "Robust condition identification against label noise in industrial processes based on trusted connection dictionary learning," Reliability Engineering and System Safety, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Chen & Xia, Yuanqing, 2024. "Interval Pareto front-based multi-objective robust optimization for sensor placement in structural modal identification," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    2. Zio, Enrico & Miqueles, Leonardo, 2024. "Digital twins in safety analysis, risk assessment and emergency management," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    3. Li, Sai & Peng, Yanfeng & Shen, Yiping & Zhao, Sibo & Shao, Haidong & Bin, Guangfu & Guo, Yong & Yang, Xingkai & Fan, Chao, 2024. "Rolling Bearing Fault Diagnosis Under Data Imbalance and Variable Speed Based on Adaptive Clustering Weighted Oversampling," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Deng, Congying & Deng, Zihao & Miao, Jianguo, 2024. "Semi-supervised ensemble fault diagnosis method based on adversarial decoupled auto-encoder with extremely limited labels," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    5. Zheng, Shuwen & Wang, Chong & Zio, Enrico & Liu, Jie, 2024. "Fault detection in complex mechatronic systems by a hierarchical graph convolution attention network based on causal paths," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Yin, Xiuxian & He, Wei & Cao, You & Ma, Ning & Zhou, Guohui & Li, Hongyu, 2024. "A new health state assessment method based on interpretable belief rule base with bimetric balance," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    7. Chaleshtori, Amir Eshaghi & Aghaie, Abdollah, 2024. "A novel bearing fault diagnosis approach using the Gaussian mixture model and the weighted principal component analysis," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    8. Izaz Raouf & Prashant Kumar & Hyewon Lee & Heung Soo Kim, 2023. "Transfer Learning-Based Intelligent Fault Detection Approach for the Industrial Robotic System," Mathematics, MDPI, vol. 11(4), pages 1-14, February.
    9. Wang, Mengmeng & Incecik, Atilla & Feng, Shizhe & Gupta, M.K. & Królczyk, Grzegorz & Li, Z, 2023. "Damage identification of offshore jacket platforms in a digital twin framework considering optimal sensor placement," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. Liu, Jie & Zheng, Shuwen & Wang, Chong, 2023. "Causal Graph Attention Network with Disentangled Representations for Complex Systems Fault Detection," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    11. Gangwal, Utkarsh & Dong, Shangjia, 2022. "Critical facility accessibility rapid failure early-warning detection and redundancy mapping in urban flooding," Reliability Engineering and System Safety, Elsevier, vol. 224(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:242:y:2024:i:c:s0951832023006282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.