IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024005842.html
   My bibliography  Save this article

Tensile capacity degradation of randomly corroded strands based on a refined numerical model

Author

Listed:
  • Zhao, Zhongwei
  • Wang, Wuyang
  • Yan, Renzhang
  • Zhao, Bingzhen

Abstract

In this study, we develop a sophisticated numerical model to analyze the axial tension behavior of seven-wire steel strands subjected to corrosion by employing the ANSYS finite element software. The axial tensile performance of steel strands subjected to random corrosion is examined, and the model's accuracy is validated by comparing it with experimental results. The corrosion degree in the steel strands is quantified by the mass loss rate χ, which denotes the ratio of the mass lost due to corrosion to the total mass. The reduction factor θ is employed to characterize the diminished axial tensile performance of the steel strands following corrosion. Two corrosion modes under random corrosion in steel strands were proposed, with lower bound formulas for the θ-χ distribution derived for each. In Mode I, the largest corrosion depth is prespecified. Mode II is characterized by destructive cross-sectional corrosion. As the corrosion intensifies, the corrosion pits can expand indefinitely across the wire's cross-section, potentially leading to significant loss or complete corrosion of a section of the steel strand. The finite element analysis indicates that the wire diameter and the corrosion pit depth affect θ-χ. The element size, steel strand length, and lay length have minimal impact.

Suggested Citation

  • Zhao, Zhongwei & Wang, Wuyang & Yan, Renzhang & Zhao, Bingzhen, 2025. "Tensile capacity degradation of randomly corroded strands based on a refined numerical model," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005842
    DOI: 10.1016/j.ress.2024.110512
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024005842
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110512?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dao, Uyen & Sajid, Zaman & Khan, Faisal & Zhang, Yahui & Tran, Trung, 2023. "Modeling and analysis of internal corrosion induced failure of oil and gas pipelines," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Li, Chao & Diao, Yucheng & Li, Hong-Nan & Pan, Haiyang & Ma, Ruisheng & Han, Qiang & Xing, Yihan, 2023. "Seismic performance assessment of a sea-crossing cable-stayed bridge system considering soil spatial variability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Song, Jingwen & Cui, Yifan & Wei, Pengfei & Valdebenito, Marcos A. & Zhang, Weihong, 2024. "Constrained Bayesian optimization algorithms for estimating design points in structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Asadi, Zohreh Soltani & Melchers, Robert E., 2017. "Extreme value statistics for pitting corrosion of old underground cast iron pipes," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 64-71.
    5. Yuan, X.-X. & Mao, D. & Pandey, M.D., 2009. "A Bayesian approach to modeling and predicting pitting flaws in steam generator tubes," Reliability Engineering and System Safety, Elsevier, vol. 94(11), pages 1838-1847.
    6. Melchers, R.E. & Jeffrey, R.J., 2008. "Probabilistic models for steel corrosion loss and pitting of marine infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 93(3), pages 423-432.
    7. Wang, Changxi & Elsayed, Elsayed A., 2020. "Stochastic modeling of corrosion growth," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    8. Liang, Qingzhu & Yang, Yinghao & Peng, Changhong, 2023. "A reliability model for systems subject to mutually dependent degradation processes and random shocks under dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    9. Pang, Rui & Yao, Haoyu & Xu, Mingyang & Zhou, Yang, 2024. "Slope displacement reliability analysis considering rock parameters spatial variability subjected to stochastic mainshock-aftershock earthquake," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    10. Wang, Tiao & Li, Chunhe & Zheng, Jian-jun & Hackl, Jürgen & Luan, Yao & Ishida, Tetsuya & Medepalli, Satya, 2023. "Consideration of coupling of crack development and corrosion in assessing the reliability of reinforced concrete beams subjected to bending," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    11. Lyu, Hao & Qu, Hongchen & Xie, Hualong & Zhang, Yimin & Pecht, Michael, 2023. "Reliability analysis of the multi-state system with nonlinear degradation model under Markov environment," Reliability Engineering and System Safety, Elsevier, vol. 238(C).
    12. Vishwanath, B Sharanbaswa & Banerjee, Swagata, 2023. "Considering uncertainty in corrosion process to estimate life-cycle seismic vulnerability and risk of aging bridge piers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    13. Ji, Ziguang & Chen, Yi & Ma, Xiaobing & Cai, Yikun & Yang, Li, 2024. "Hierarchical condition-based maintenance planning for corrosion process considering natural environmental impact," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    14. Teng, Da & Feng, Yun-Wen & Lu, Cheng & Liu, Jia-Qi & Chen, Jun-Yu, 2024. "Vectorial generative adversarial surrogate modeling reliability evaluation framework for engineering structural systems," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    15. Xie, Yi & Zhang, Jinsuo & Aldemir, Tunc & Denning, Richard, 2018. "Multi-state Markov modeling of pitting corrosion in stainless steel exposed to chloride-containing environment," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 239-248.
    16. Castellon, Dario Fernandez & Fenerci, Aksel & Petersen, Øyvind Wiig & Øiseth, Ole, 2023. "Full long-term buffeting analysis of suspension bridges using Gaussian process surrogate modelling and importance sampling Monte Carlo simulations," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Heidary, Roohollah & Groth, Katrina M., 2021. "A hybrid population-based degradation model for pipeline pitting corrosion," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    18. Chookah, M. & Nuhi, M. & Modarres, M., 2011. "A probabilistic physics-of-failure model for prognostic health management of structures subject to pitting and corrosion-fatigue," Reliability Engineering and System Safety, Elsevier, vol. 96(12), pages 1601-1610.
    19. Rizzo, Fabio & Pistol, Aleksander & Caracoglia, Luca, 2024. "Estimating nonlinear wind-induced response of roof cable nets by aeroelastic experiments and ML modeling," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Zhou & Yu, Xiaohui & Gardoni, Paolo & Ji, Kun & Lu, Dagang, 2025. "Seismic risk estimates for reinforced concrete structures with incorporation of corrosion and aftershock," Reliability Engineering and System Safety, Elsevier, vol. 254(PA).
    2. Woloszyk, Krzysztof & Garbatov, Yordan, 2024. "A probabilistic-driven framework for enhanced corrosion estimation of ship structural components," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Bansal, Parth & Zheng, Zhuoyuan & Shao, Chenhui & Li, Jingjing & Banu, Mihaela & Carlson, Blair E & Li, Yumeng, 2022. "Physics-informed machine learning assisted uncertainty quantification for the corrosion of dissimilar material joints," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    4. Li, Si-Qi & Gardoni, Paolo, 2024. "Optimized seismic hazard and structural vulnerability model considering macroseismic intensity measures," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    5. Qin, Xia & Kaewunruen, Sakdirat, 2024. "Machine learning and traditional approaches in shear reliability of steel fiber reinforced concrete beams," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    6. Salem, Marwa Belhaj & Fouladirad, Mitra & Deloux, Estelle, 2022. "Variance Gamma process as degradation model for prognosis and imperfect maintenance of centrifugal pumps," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    7. Li, Xinhong & Jia, Ruichao & Zhang, Renren & Yang, Shangyu & Chen, Guoming, 2022. "A KPCA-BRANN based data-driven approach to model corrosion degradation of subsea oil pipelines," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    8. Ebrahimi, Mehrdad & Nobahar, Elnaz & Mohammadi, Reza Karami & Noroozinejad Farsangi, Ehsan & Noori, Mohammad & Li, Shaofan, 2023. "The influence of model and measurement uncertainties on damage detection of experimental structures through recursive algorithms," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    9. Miao, Xingyuan & Zhao, Hong, 2024. "Corroded submarine pipeline degradation prediction based on theory-guided IMOSOA-EL model," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Ji, Haodong & Lyu, Yuhui & Tian, Zushi & Ye, Hailong, 2025. "Assessment of corrosion probability of steel in mortars using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    11. Wang, Tiao & Li, Chunhe & Zheng, Jian-jun & Hackl, Jürgen & Luan, Yao & Ishida, Tetsuya & Medepalli, Satya, 2023. "Consideration of coupling of crack development and corrosion in assessing the reliability of reinforced concrete beams subjected to bending," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    12. Lin, Yan-Hui & Li, Yan-Fu & Zio, Enrico, 2018. "A comparison between Monte Carlo simulation and finite-volume scheme for reliability assessment of multi-state physics systems," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 1-11.
    13. Wu, Jiawei & Wan, Liangqi, 2024. "Reliability sensitivity analysis for RBSMC: A high-efficiency multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    14. Vishwanath, B Sharanbaswa & Banerjee, Swagata, 2023. "Considering uncertainty in corrosion process to estimate life-cycle seismic vulnerability and risk of aging bridge piers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    15. Tamura, Yukio & Chen, Bo & Wu, Yue & Su, Ning & Yang, Qingshan, 2024. "Classification of equivalent static wind loads: Comparisons and applications," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    16. Liu, Qiang & Huang, Delong & Zhang, Bin & Tang, Aiping & Xu, Xiuchen, 2024. "Developing a probability-based technique to improve the measurement of landslide vulnerability on regional roads," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    17. Jin, Guang & Matthews, David E. & Zhou, Zhongbao, 2013. "A Bayesian framework for on-line degradation assessment and residual life prediction of secondary batteries inspacecraft," Reliability Engineering and System Safety, Elsevier, vol. 113(C), pages 7-20.
    18. Li, Chao & Diao, Yucheng & Li, Hong-Nan & Pan, Haiyang & Ma, Ruisheng & Han, Qiang & Xing, Yihan, 2023. "Seismic performance assessment of a sea-crossing cable-stayed bridge system considering soil spatial variability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    19. Wang, Changxi & Elsayed, Elsayed A., 2020. "Stochastic modeling of corrosion growth," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    20. Bai, Guo-Peng & Er, Guo-Kang & Iu, Vai Pan, 2024. "A novel stochastic approach to investigate the probabilistic characteristics of the ship roll system with sinusoidal restoring force," Reliability Engineering and System Safety, Elsevier, vol. 250(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005842. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.