IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v241y2024ics0951832023005276.html
   My bibliography  Save this article

Constrained Bayesian optimization algorithms for estimating design points in structural reliability analysis

Author

Listed:
  • Song, Jingwen
  • Cui, Yifan
  • Wei, Pengfei
  • Valdebenito, Marcos A.
  • Zhang, Weihong

Abstract

Estimating the design points with high accuracy is a historical and key issue for many reliability analysis and reliability-based design optimization methods. Indeed, it is still a challenge especially when the limit state functions (LSFs) show highly nonlinear behaviors, and/or the reliability index is large, and/or the gradients of LSF are not available. To fill the above gap, two acquisition functions incorporating both the objective function and constraints are devised, and based on which, a Constrained Bayesian Optimization (ConBayOpt) method is firstly developed for actively learning the design points with high accuracy and global convergence. Further, an improved algorithm, called Constrained Bayesian Subset Optimization (ConBaySubOpt) is devised for adaptively learning the design points far away from the origin of the standard normal space. Similar to subset simulation, the ConBaySubOpt algorithm automatically produces a set of intermediate failure surfaces and feasible regions for approaching the true design point, but does not require Markov Chain Monte Carlo simulation for conditional sampling. The efficiency, accuracy and wide applicability of the proposed methods are demonstrated with two test examples and three engineering examples.

Suggested Citation

  • Song, Jingwen & Cui, Yifan & Wei, Pengfei & Valdebenito, Marcos A. & Zhang, Weihong, 2024. "Constrained Bayesian optimization algorithms for estimating design points in structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
  • Handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023005276
    DOI: 10.1016/j.ress.2023.109613
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023005276
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109613?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Qian, Hua-Ming & Li, Yan-Feng & Huang, Hong-Zhong, 2021. "Time-variant system reliability analysis method for a small failure probability problem," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    2. Zhang, Z. & Jiang, C. & Wang, G.G. & Han, X., 2015. "First and second order approximate reliability analysis methods using evidence theory," Reliability Engineering and System Safety, Elsevier, vol. 137(C), pages 40-49.
    3. Dang, Chao & Wei, Pengfei & Faes, Matthias G.R. & Valdebenito, Marcos A. & Beer, Michael, 2022. "Parallel adaptive Bayesian quadrature for rare event estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Zhou, Tong & Peng, Yongbo, 2022. "Reliability analysis using adaptive Polynomial-Chaos Kriging and probability density evolution method," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    5. Zhang, Yu & Dong, You & Xu, Jun, 2023. "An accelerated active learning Kriging model with the distance-based subdomain and a new stopping criterion for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    6. Valdebenito, Marcos A. & Wei, Pengfei & Song, Jingwen & Beer, Michael & Broggi, Matteo, 2021. "Failure probability estimation of a class of series systems by multidomain Line Sampling," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    7. D. Huang & T. Allen & W. Notz & N. Zeng, 2006. "Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models," Journal of Global Optimization, Springer, vol. 34(3), pages 441-466, March.
    8. Van Huynh, Thu & Tangaramvong, Sawekchai & Do, Bach & Gao, Wei & Limkatanyu, Suchart, 2023. "Sequential most probable point update combining Gaussian process and comprehensive learning PSO for structural reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    9. Wei, Pengfei & Zheng, Yu & Fu, Jiangfeng & Xu, Yuannan & Gao, Weikai, 2023. "An expected integrated error reduction function for accelerating Bayesian active learning of failure probability," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Bohua & Wang, Weigang & Lei, Haoran & Hu, Xiancun & Li, Chun-Qing, 2024. "An improved analytical solution to outcrossing rate for scalar nonstationary and non-gaussian processes," Reliability Engineering and System Safety, Elsevier, vol. 247(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hong, Fangqi & Wei, Pengfei & Fu, Jiangfeng & Beer, Michael, 2024. "A sequential sampling-based Bayesian numerical method for reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Zhang, Bohua & Wang, Weigang & Lei, Haoran & Hu, Xiancun & Li, Chun-Qing, 2024. "An improved analytical solution to outcrossing rate for scalar nonstationary and non-gaussian processes," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    3. Zhou, Tong & Guo, Tong & Dong, You & Yang, Fan & Frangopol, Dan M., 2024. "Look-ahead active learning reliability analysis based on stepwise margin reduction," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Wang, Lei & Hu, Zhuo & Dang, Chao & Beer, Michael, 2024. "Refined parallel adaptive Bayesian quadrature for estimating small failure probabilities," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    5. Zhang, Yu & Dong, You & Frangopol, Dan M., 2024. "An error-based stopping criterion for spherical decomposition-based adaptive Kriging model and rare event estimation," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    6. Liu, Gang & Gao, Kai & Yang, Qingshan & Tang, Wei & Law, S.S., 2021. "Improvement to the discretized initial condition of the generalized density evolution equation," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Dang, Chao & Valdebenito, Marcos A. & Wei, Pengfei & Song, Jingwen & Beer, Michael, 2024. "Bayesian active learning line sampling with log-normal process for rare-event probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    8. Li, Guofa & Wang, Tianzhe & Chen, Zequan & He, Jialong & Wang, Xiaoye & Du, Xuejiao, 2023. "RBIK-SS: A parallel adaptive structural reliability analysis method for rare failure events," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    9. Zhang, Long-Wen & Dang, Chao & Zhao, Yan-Gang, 2023. "An efficient method for accessing structural reliability indexes via power transformation family," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    10. Pei, Pei & Zhou, Tong, 2023. "One-step look-ahead policy for active learning reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    11. Xu, Jun & Song, Jinheng & Yu, Quanfu & Kong, Fan, 2023. "Generalized distribution reconstruction based on the inversion of characteristic function curve for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    12. Zhan, Hongyou & Xiao, Ning-Cong & Ji, Yuxiang, 2022. "An adaptive parallel learning dependent Kriging model for small failure probability problems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    13. Dhulipala, Somayajulu L.N. & Shields, Michael D. & Chakroborty, Promit & Jiang, Wen & Spencer, Benjamin W. & Hales, Jason D. & Labouré, Vincent M. & Prince, Zachary M. & Bolisetti, Chandrakanth & Che, 2022. "Reliability estimation of an advanced nuclear fuel using coupled active learning, multifidelity modeling, and subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    14. Zhang, Yang & Xu, Jun & Beer, Michael, 2023. "A single-loop time-variant reliability evaluation via a decoupling strategy and probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    15. Qi Fan & Jiaqiao Hu, 2018. "Surrogate-Based Promising Area Search for Lipschitz Continuous Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 677-693, November.
    16. Dellino, G. & Lino, P. & Meloni, C. & Rizzo, A., 2009. "Kriging metamodel management in the design optimization of a CNG injection system," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(8), pages 2345-2360.
    17. Zheng, Xiaohu & Yao, Wen & Zhang, Yunyang & Zhang, Xiaoya, 2022. "Consistency regularization-based deep polynomial chaos neural network method for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    18. Mehdad, E. & Kleijnen, Jack P.C., 2014. "Global Optimization for Black-box Simulation via Sequential Intrinsic Kriging," Other publications TiSEM 8fa8d96f-a086-4c4b-88ab-9, Tilburg University, School of Economics and Management.
    19. Das, Sourav & Tesfamariam, Solomon, 2024. "Reliability assessment of stochastic dynamical systems using physics informed neural network based PDEM," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    20. Dawei Zhan & Jiachang Qian & Yuansheng Cheng, 2017. "Balancing global and local search in parallel efficient global optimization algorithms," Journal of Global Optimization, Springer, vol. 67(4), pages 873-892, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:241:y:2024:i:c:s0951832023005276. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.