IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v235y2023ics0951832023001266.html
   My bibliography  Save this article

Full long-term buffeting analysis of suspension bridges using Gaussian process surrogate modelling and importance sampling Monte Carlo simulations

Author

Listed:
  • Castellon, Dario Fernandez
  • Fenerci, Aksel
  • Petersen, Øyvind Wiig
  • Øiseth, Ole

Abstract

Recent findings from full-scale measurements campaigns and analytical investigations of the design buffeting response of long-span bridges suggest that the assumptions adopted in most wind-resistant design guidelines are not strictly conservative. In such cases, a full long-term analysis is the most accurate alternative for reliability-based design. However, the application of such methodology becomes unfeasible due to the corresponding computational demand. Notably, many evaluations of the buffeting response are required, and time-consuming numerical integration is traditionally used to evaluate the long-term response. To overcome these drawbacks, this paper proposes a framework to increase the computational efficacy of long-term analyses for the wind-resistant design of long-span bridges by combining two strategies. First, the buffeting response is estimated with a Gaussian process regression that requires less time than the traditional multimodal buffeting response estimation. Then, long-term analysis is carried out using importance sampling Monte Carlo simulations that converge faster than the traditional analysis based on numerical integration. The computational framework is demonstrated in a case study of a proposed super-long suspension bridge subjected to loads induced by wind buffeting. The advantage of the proposed framework is verified, as it requires less than 1% of the computational demand of the traditional full long-term analysis.

Suggested Citation

  • Castellon, Dario Fernandez & Fenerci, Aksel & Petersen, Øyvind Wiig & Øiseth, Ole, 2023. "Full long-term buffeting analysis of suspension bridges using Gaussian process surrogate modelling and importance sampling Monte Carlo simulations," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
  • Handle: RePEc:eee:reensy:v:235:y:2023:i:c:s0951832023001266
    DOI: 10.1016/j.ress.2023.109211
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023001266
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Zhili & Wang, Jian & Li, Rui & Tong, Cao, 2017. "LIF: A new Kriging based learning function and its application to structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 152-165.
    2. Zuniga, M. Munoz & Murangira, A. & Perdrizet, T., 2021. "Structural reliability assessment through surrogate based importance sampling with dimension reduction," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    3. Echard, B. & Gayton, N. & Lemaire, M. & Relun, N., 2013. "A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 232-240.
    4. Gaspar, B. & Teixeira, A.P. & Guedes Soares, C., 2017. "Adaptive surrogate model with active refinement combining Kriging and a trust region method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 277-291.
    5. Adedipe, Tosin & Shafiee, Mahmood & Zio, Enrico, 2020. "Bayesian Network Modelling for the Wind Energy Industry: An Overview," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    6. Xiao, Ning-Cong & Yuan, Kai & Zhan, Hongyou, 2022. "System reliability analysis based on dependent Kriging predictions and parallel learning strategy," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    7. Xiong, Yifang & Sampath, Suresh, 2021. "A fast-convergence algorithm for reliability analysis based on the AK-MCS," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    8. Guo, Qing & Liu, Yongshou & Chen, Bingqian & Yao, Qin, 2021. "A variable and mode sensitivity analysis method for structural system using a novel active learning Kriging model," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    9. Ameryan, Ala & Ghalehnovi, Mansour & Rashki, Mohsen, 2022. "AK-SESC: a novel reliability procedure based on the integration of active learning kriging and sequential space conversion method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Yuan, Kai & Xiao, Ning-Cong & Wang, Zhonglai & Shang, Kun, 2020. "System reliability analysis by combining structure function and active learning kriging model," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    11. Wang, Jian & Sun, Zhili & Cao, Runan, 2021. "An efficient and robust Kriging-based method for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiao, Yidan & Gao, Xinwei & Ma, Lin & Chen, Dengkai, 2024. "Dynamic human error risk assessment of group decision-making in extreme cooperative scenario," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    2. Fang, Chen & Xu, You-Lin & Li, Yongle & Li, Jinrong, 2024. "Serviceability analysis of sea-crossing bridges under correlated wind and wave loads," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    3. Zheng, Xiaohu & Yao, Wen & Zhang, Xiaoya & Qian, Weiqi & Zhang, Hairui, 2023. "Parameterized coefficient fine-tuning-based polynomial chaos expansion method for sphere-biconic reentry vehicle reliability analysis and design," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    4. Wu, Jiawei & Wan, Liangqi, 2024. "Reliability sensitivity analysis for RBSMC: A high-efficiency multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 243(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Peiping & Wang, Yu, 2022. "An active learning reliability analysis method using adaptive Bayesian compressive sensing and Monte Carlo simulation (ABCS-MCS)," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Li, Wenxiong & Geng, Rong & Chen, Suiyin, 2024. "CSP-free adaptive Kriging surrogate model method for reliability analysis with small failure probability," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Zhang, Yu & Dong, You & Xu, Jun, 2023. "An accelerated active learning Kriging model with the distance-based subdomain and a new stopping criterion for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Ni, Pinghe & Li, Jun & Hao, Hong & Yan, Weimin & Du, Xiuli & Zhou, Hongyuan, 2020. "Reliability analysis and design optimization of nonlinear structures," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    5. Jiang, Chen & Qiu, Haobo & Gao, Liang & Wang, Dapeng & Yang, Zan & Chen, Liming, 2020. "EEK-SYS: System reliability analysis through estimation error-guided adaptive Kriging approximation of multiple limit state surfaces," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    6. Yang, Seonghyeok & Lee, Mingyu & Lee, Ikjin, 2023. "A new sampling approach for system reliability-based design optimization under multiple simulation models," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    7. Yang, Seonghyeok & Jo, Hwisang & Lee, Kyungeun & Lee, Ikjin, 2022. "Expected system improvement (ESI): A new learning function for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    8. Xiao, Mi & Zhang, Jinhao & Gao, Liang, 2020. "A system active learning Kriging method for system reliability-based design optimization with a multiple response model," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    9. Zhang, Jinhao & Gao, Liang & Xiao, Mi, 2020. "A composite-projection-outline-based approximation method for system reliability analysis with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    10. Wang, Yanzhong & Xie, Bin & E, Shiyuan, 2022. "Adaptive relevance vector machine combined with Markov-chain-based importance sampling for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    11. Moustapha, Maliki & Parisi, Pietro & Marelli, Stefano & Sudret, Bruno, 2024. "Reliability analysis of arbitrary systems based on active learning and global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    12. Wang, Jian & Sun, Zhili & Cao, Runan, 2021. "An efficient and robust Kriging-based method for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    13. Zhou, Yicheng & Lu, Zhenzhou & Yun, Wanying, 2020. "Active sparse polynomial chaos expansion for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
    14. Zhan, Hongyou & Xiao, Ning-Cong & Ji, Yuxiang, 2022. "An adaptive parallel learning dependent Kriging model for small failure probability problems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    15. Bakeer, Tammam, 2023. "General partial safety factor theory for the assessment of the reliability of nonlinear structural systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    16. Chengning Zhou & Ning-Cong Xiao & Ming J Zuo & Xiaoxu Huang, 2020. "AK-PDF: An active learning method combining kriging and probability density function for efficient reliability analysis," Journal of Risk and Reliability, , vol. 234(3), pages 536-549, June.
    17. Bolin Liu & Liyang Xie, 2020. "An Improved Structural Reliability Analysis Method Based on Local Approximation and Parallelization," Mathematics, MDPI, vol. 8(2), pages 1-13, February.
    18. Dong, Y. & Teixeira, A.P. & Guedes Soares, C., 2020. "Application of adaptive surrogate models in time-variant fatigue reliability assessment of welded joints with surface cracks," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    19. Jiang, Chen & Qiu, Haobo & Yang, Zan & Chen, Liming & Gao, Liang & Li, Peigen, 2019. "A general failure-pursuing sampling framework for surrogate-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 47-59.
    20. Wang, Zeyu & Shafieezadeh, Abdollah, 2019. "REAK: Reliability analysis through Error rate-based Adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 33-45.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:235:y:2023:i:c:s0951832023001266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.