IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006070.html
   My bibliography  Save this article

Assessment of corrosion probability of steel in mortars using machine learning

Author

Listed:
  • Ji, Haodong
  • Lyu, Yuhui
  • Tian, Zushi
  • Ye, Hailong

Abstract

Corrosion assessment enables engineers to quickly discern the corrosion status of steel in concrete structures. However, existing assessment methods mainly rely on a single-factor and exhibit poor adaptability to various corrosion scenarios. Moreover, most methods are traditional deterministic approach, which ignores the uncertainties in corrosion assessments. In this work, machine learning (ML) is employed to develop a multifactor classification model for multi-level corrosion status assessment, together with corresponding corrosion probability maps. First, a comprehensive corrosion dataset was collected, including relative humidity (RH), electrical resistivity (ER), corrosion potential (CP), and corrosion rate (CR). The CR was used to subdivide different corrosion levels, and ML classification models were established for three-factor and two-factor scenarios. The optimal model was then used to create corrosion probability maps for various corrosion levels. The results indicated that the poor reliability and accuracies in current corrosion assessment methods originated from the inconsistent corrosion behaviors induced by carbonation and chloride in concrete. Moreover, when using the corrosion probability maps to assess corrosion status of steel in mortars, CP and ER should first be used to determine if the steel is in an active state, followed by RH and CP to evaluate whether it is in a severe-corrosion state.

Suggested Citation

  • Ji, Haodong & Lyu, Yuhui & Tian, Zushi & Ye, Hailong, 2025. "Assessment of corrosion probability of steel in mortars using machine learning," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006070
    DOI: 10.1016/j.ress.2024.110535
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110535?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006070. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.