Author
Listed:
- Qin, Xia
- Kaewunruen, Sakdirat
Abstract
In the field of structural engineering, the exploration of steel fibre reinforced concrete (SFRC) beams has recently intensified, particularly due to their improved tension and shear performance of structure. This study pioneers a novel reliability analysis of shear capacity predictions for SFRC beams, distinctively classifying the datasets into high-strength (HSFRC) and normal-strength (NSFRC) categories. A comprehensive database of 142 HSFRC and 265 NSFRC beams serves as the foundation for this analysis, which critically examines the standard Gaussian distribution in shear design models and proposes the Lognormal and Weibull distributions as more precise alternatives. Employing advanced First-order (FORM) and Second-order Reliability Methods (SORM), the study covers a broad spectrum of load conditions, including dead, live, snow, wind, and seismic loads, to evaluate various empirical, semi-empirical and machine learning proposed shear capacity prediction formulas. One of the key innovations of this research is the development of differentiated resistance coefficients for various risk levels in the reliability analysis, allowing future structural designers to tailor their designs according to specific risk profiles. This approach significantly enhances the balance between economic efficiency and structural safety based on the evolution of different target reliability indexes. The study reveals that existing design equations for SFRC beams generally lean towards conservatism. This study found that formulas derived from machine learning exhibited superior prediction ability compared to traditional theoretically derived regression formulas. When compared the proposed machine learning formulas, the Tarawneh's formula demonstrated better prediction ability than the Kara's formula when applied to larger datasets. However, high predictive power does not necessarily equate to high reliability. Machine learning formulas prioritise predictive accuracy, often at the expense of insufficient redundancy for ensuring safety. Overall, it introduces Kara's formula for NSFRC beams, which stands out with its superior predictive performance, offering an optimal balance of safety and cost-efficiency. Ashour's formula is also identified as a more effective and safer option for HSFRC beams. Complementing these findings, the extensive sensitivity analysis of the collected data not only confirms the robustness of the conclusions but also prepares for the integration of broader datasets in the future.
Suggested Citation
Qin, Xia & Kaewunruen, Sakdirat, 2024.
"Machine learning and traditional approaches in shear reliability of steel fiber reinforced concrete beams,"
Reliability Engineering and System Safety, Elsevier, vol. 251(C).
Handle:
RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004113
DOI: 10.1016/j.ress.2024.110339
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004113. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.