IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics0951832024004113.html
   My bibliography  Save this article

Machine learning and traditional approaches in shear reliability of steel fiber reinforced concrete beams

Author

Listed:
  • Qin, Xia
  • Kaewunruen, Sakdirat

Abstract

In the field of structural engineering, the exploration of steel fibre reinforced concrete (SFRC) beams has recently intensified, particularly due to their improved tension and shear performance of structure. This study pioneers a novel reliability analysis of shear capacity predictions for SFRC beams, distinctively classifying the datasets into high-strength (HSFRC) and normal-strength (NSFRC) categories. A comprehensive database of 142 HSFRC and 265 NSFRC beams serves as the foundation for this analysis, which critically examines the standard Gaussian distribution in shear design models and proposes the Lognormal and Weibull distributions as more precise alternatives. Employing advanced First-order (FORM) and Second-order Reliability Methods (SORM), the study covers a broad spectrum of load conditions, including dead, live, snow, wind, and seismic loads, to evaluate various empirical, semi-empirical and machine learning proposed shear capacity prediction formulas. One of the key innovations of this research is the development of differentiated resistance coefficients for various risk levels in the reliability analysis, allowing future structural designers to tailor their designs according to specific risk profiles. This approach significantly enhances the balance between economic efficiency and structural safety based on the evolution of different target reliability indexes. The study reveals that existing design equations for SFRC beams generally lean towards conservatism. This study found that formulas derived from machine learning exhibited superior prediction ability compared to traditional theoretically derived regression formulas. When compared the proposed machine learning formulas, the Tarawneh's formula demonstrated better prediction ability than the Kara's formula when applied to larger datasets. However, high predictive power does not necessarily equate to high reliability. Machine learning formulas prioritise predictive accuracy, often at the expense of insufficient redundancy for ensuring safety. Overall, it introduces Kara's formula for NSFRC beams, which stands out with its superior predictive performance, offering an optimal balance of safety and cost-efficiency. Ashour's formula is also identified as a more effective and safer option for HSFRC beams. Complementing these findings, the extensive sensitivity analysis of the collected data not only confirms the robustness of the conclusions but also prepares for the integration of broader datasets in the future.

Suggested Citation

  • Qin, Xia & Kaewunruen, Sakdirat, 2024. "Machine learning and traditional approaches in shear reliability of steel fiber reinforced concrete beams," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004113
    DOI: 10.1016/j.ress.2024.110339
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024004113
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110339?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pugliese, F. & De Risi, R. & Sarno, L. Di, 2022. "Reliability assessment of existing RC bridges with spatially-variable pitting corrosion subjected to increasing traffic demand," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    2. Hao, Peng & Tang, Hao & Wang, Yu & Wu, Tao & Feng, Shaojun & Wang, Bo, 2023. "Stochastic isogeometric buckling analysis of composite shell considering multiple uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Ebrahimi, Mehrdad & Nobahar, Elnaz & Mohammadi, Reza Karami & Noroozinejad Farsangi, Ehsan & Noori, Mohammad & Li, Shaofan, 2023. "The influence of model and measurement uncertainties on damage detection of experimental structures through recursive algorithms," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    4. Wang, Tiao & Li, Chunhe & Zheng, Jian-jun & Hackl, Jürgen & Luan, Yao & Ishida, Tetsuya & Medepalli, Satya, 2023. "Consideration of coupling of crack development and corrosion in assessing the reliability of reinforced concrete beams subjected to bending," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    5. Xia Qin & Sakdirat Kaewunruen, 2023. "Eco-Friendly Design and Sustainability Assessments of Fibre-Reinforced High-Strength Concrete Structures Automated by Data-Driven Machine Learning Models," Sustainability, MDPI, vol. 15(8), pages 1-31, April.
    6. Gangolu, Jaswanth & Kishore, Katchalla Bala & Sharma, Hrishikesh, 2023. "Probabilistic demand models and reliability based code calibration for reinforced concrete column and beam subjected to blast loading," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    7. Vishwanath, B Sharanbaswa & Banerjee, Swagata, 2023. "Considering uncertainty in corrosion process to estimate life-cycle seismic vulnerability and risk of aging bridge piers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    8. Cao Wang, 2021. "Structural Reliability and Time-Dependent Reliability," Springer Series in Reliability Engineering, Springer, number 978-3-030-62505-4, June.
    9. Miele, S. & Karve, P. & Mahadevan, S., 2023. "Multi-fidelity physics-informed machine learning for probabilistic damage diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    10. Papaioannou, Iason & Straub, Daniel, 2021. "Variance-based reliability sensitivity analysis and the FORM α-factors," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    11. Zhao, Enyong & Wang, Qihan & Alamdari, Mehrisadat Makki & Gao, Wei, 2023. "Advanced virtual model assisted most probable point capturing method for engineering structures," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    12. He, Jingran & Gao, Ruofan & Chen, Jianbing, 2022. "A sparse data-driven stochastic damage model for seismic reliability assessment of reinforced concrete structures," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ebrahimi, Mehrdad & Nobahar, Elnaz & Mohammadi, Reza Karami & Noroozinejad Farsangi, Ehsan & Noori, Mohammad & Li, Shaofan, 2023. "The influence of model and measurement uncertainties on damage detection of experimental structures through recursive algorithms," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Wang, Tiao & Li, Chunhe & Zheng, Jian-jun & Hackl, Jürgen & Luan, Yao & Ishida, Tetsuya & Medepalli, Satya, 2023. "Consideration of coupling of crack development and corrosion in assessing the reliability of reinforced concrete beams subjected to bending," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    3. Li, Jin-Yang & Lu, Jubin & Zhou, Hao, 2023. "Reliability analysis of structures with inerter-based isolation layer under stochastic seismic excitations," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Phan, Hieu Chi & Dhar, Ashutosh Sutra & Bui, Nang Duc, 2023. "Reliability assessment of pipelines crossing strike-slip faults considering modeling uncertainties using ANN models," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Vishwanath, B Sharanbaswa & Banerjee, Swagata, 2023. "Considering uncertainty in corrosion process to estimate life-cycle seismic vulnerability and risk of aging bridge piers," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    6. Liu, Qiang & Huang, Delong & Zhang, Bin & Tang, Aiping & Xu, Xiuchen, 2024. "Developing a probability-based technique to improve the measurement of landslide vulnerability on regional roads," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    7. Li, Chao & Diao, Yucheng & Li, Hong-Nan & Pan, Haiyang & Ma, Ruisheng & Han, Qiang & Xing, Yihan, 2023. "Seismic performance assessment of a sea-crossing cable-stayed bridge system considering soil spatial variability," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    8. Jung, WoongHee & Taflanidis, Alexandros A., 2023. "Efficient global sensitivity analysis for high-dimensional outputs combining data-driven probability models and dimensionality reduction," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    9. Bai, Guo-Peng & Er, Guo-Kang & Iu, Vai Pan, 2024. "A novel stochastic approach to investigate the probabilistic characteristics of the ship roll system with sinusoidal restoring force," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    10. Fernández, Juan & Chiachío, Juan & Barros, José & Chiachío, Manuel & Kulkarni, Chetan S., 2024. "Physics-guided recurrent neural network trained with approximate Bayesian computation: A case study on structural response prognostics," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    11. Krzysztof Jakubowski & Jacek Paś & Stanisław Duer & Jarosław Bugaj, 2021. "Operational Analysis of Fire Alarm Systems with a Focused, Dispersed and Mixed Structure in Critical Infrastructure Buildings," Energies, MDPI, vol. 14(23), pages 1-24, November.
    12. Zhang, Feng & Wang, Xinhe & Hou, Xinting & Han, Cheng & Wu, Mingying & Liu, Zhongbing, 2022. "Variance-based global sensitivity analysis of a hybrid thermoelectric generator fuzzy system," Applied Energy, Elsevier, vol. 307(C).
    13. Shang, Yue & Nogal, Maria & Teixeira, Rui & Wolfert, A.R. (Rogier) M., 2024. "Extreme-oriented sensitivity analysis using sparse polynomial chaos expansion. Application to train–track–bridge systems," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    14. Mathpati, Yogesh Chandrakant & More, Kalpesh Sanjay & Tripura, Tapas & Nayek, Rajdip & Chakraborty, Souvik, 2023. "MAntRA: A framework for model agnostic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    15. Sun, Xiaojun & Feng, Ding & Zhang, Qiang & Lin, Sheng, 2024. "Optimal siting of substations of traction power supply systems considering seismic risk," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    16. Oster, Matthew R. & King, Ethan & Bakker, Craig & Bhattacharya, Arnab & Chatterjee, Samrat & Pan, Feng, 2023. "Multi-level optimization with the koopman operator for data-driven, domain-aware, and dynamic system security," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    17. Woloszyk, Krzysztof & Garbatov, Yordan, 2024. "A probabilistic-driven framework for enhanced corrosion estimation of ship structural components," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    18. Li, Shunlong & Wang, Jie & He, Shaoyang, 2023. "Connectivity probability evaluation of a large-scale highway bridge network using network decomposition," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    19. Zhao, Zhao & Lu, Zhao-Hui & Zhao, Yan-Gang, 2024. "A novel single-loop estimation method for predictive failure probability-based global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    20. Zheng, Zhi & Tian, Aonan & Pan, Xiaolan & Ji, Duofa & Wang, Yong, 2024. "The damage-based fragility analysis and probabilistic safety assessment of containment under internal pressure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024004113. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.