IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024005830.html
   My bibliography  Save this article

A novel cross-entropy-based importance sampling method for cumulative time-dependent failure probability function

Author

Listed:
  • Lu, Yixin
  • Lu, Zhenzhou

Abstract

Cumulative time-dependent failure probability function (C-T-FPF) can reflect the effects of distribution parameters of random inputs and the upper bound of service time interval, which vary in their design domains, on time-dependent failure probability. However, solving C-T-FPF involves a time-consuming triple-layer framework. Thus, we propose an efficient method by combining cross-entropy-based importance sampling (IS) with adaptive Kriging model (CE-IS-AK). The innovations of CE-IS-AK include two aspects. Firstly, we construct a space augmented by both distribution parameters and the upper bound of service time interval, on which the triple-layer framework is decoupled to a single-layer one. And in the augmented space, an optimal IS density is proposed to reduce the required candidate sample size for estimating C-T-FPF. Secondly, we employ Gaussian mixture model (GMM) to approximate the optimal IS density, and the parameters in GMM are determined by minimizing the cross entropy of GMM and the optimal IS density. Moreover, to reduce the model evaluations in the proposed method, Kriging model is adaptively embedded to replace the actual model, and a first failure instant based learning function is proposed to train Kriging model adaptively. Due to the proposed single-layer framework and IS strategy assisted by the Kriging model, the efficiency is greatly improved for estimating C-T-FPF, which is validated by several examples.

Suggested Citation

  • Lu, Yixin & Lu, Zhenzhou, 2025. "A novel cross-entropy-based importance sampling method for cumulative time-dependent failure probability function," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005830
    DOI: 10.1016/j.ress.2024.110511
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024005830
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110511?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Zhao & Zhao, Yan-Gang & Li, Pei-Pei, 2023. "A novel decoupled time-variant reliability-based design optimization approach by improved extreme value moment method," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Ouyang, Linhan & Che, Yushuai & Park, Chanseok & Chen, Yuejian, 2024. "A novel active learning Gaussian process modeling-based method for time-dependent reliability analysis considering mixed variables," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    3. Yuan, Xiukai & Qian, Yugeng & Chen, Jingqiang & Faes, Matthias G.R. & Valdebenito, Marcos A. & Beer, Michael, 2023. "Global failure probability function estimation based on an adaptive strategy and combination algorithm," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    4. Zhang, Kun & Chen, Ning & Zeng, Peng & Liu, Jian & Beer, Michael, 2022. "An efficient reliability analysis method for structures with hybrid time-dependent uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    5. Ling, Chunyan & Lu, Zhenzhou & Zhang, Xiaobo, 2020. "An efficient method based on AK-MCS for estimating failure probability function," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    6. Markus Gasser & Gerhart Schuëller, 1997. "Reliability-Based Optimization of structural systems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 46(3), pages 287-307, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yuan, Xiukai & Qian, Yugeng & Chen, Jingqiang & Faes, Matthias G.R. & Valdebenito, Marcos A. & Beer, Michael, 2023. "Global failure probability function estimation based on an adaptive strategy and combination algorithm," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Yuan, Xiukai & Zheng, Weiming & Zhao, Chaofan & Valdebenito, Marcos A. & Faes, Matthias G.R. & Dong, Yiwei, 2024. "Line sampling for time-variant failure probability estimation using an adaptive combination approach," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Li, Fen & Lu, Zhenzhou & Feng, Kaixuan, 2021. "Improved chance index and its solutions for quantifying the structural safety degree under twofold random uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    4. Ouyang, Linhan & Che, Yushuai & Park, Chanseok & Chen, Yuejian, 2024. "A novel active learning Gaussian process modeling-based method for time-dependent reliability analysis considering mixed variables," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    5. Wang, Zihan & Daeipour, Mohamad & Xu, Hongyi, 2023. "Quantification and propagation of Aleatoric uncertainties in topological structures," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    6. Chunyan, Ling & Jingzhe, Lei & Way, Kuo, 2022. "Bayesian support vector machine for optimal reliability design of modular systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    7. Song, Zhouzhou & Zhang, Hanyu & Liu, Zhao & Zhu, Ping, 2023. "A two-stage Kriging estimation variance reduction method for efficient time-variant reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Jiang, Xia & Lu, Zhenzhou, 2024. "A novel quantile-based sequential optimization and reliability assessment method for safety life analysis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    9. Jiang, Hongrui & Ding, Long & Ji, Jie & Zhu, Jiping, 2024. "Building reliability of risk assessment of domino effects in chemical tank farm through an improved uncertainty analysis method," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    10. Hu, Yishuang & Ding, Yi & Bao, Minglei, 2024. "An efficient reliability evaluation method for large-scale multi-performance multi-state series-parallel systems considering multi-dimensional approximation," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    11. Chen, Junhua & Chen, Zhiqun & Jiang, Wei & Guo, Hun & Chen, Longmiao, 2025. "A reliability-based design optimization strategy using quantile surrogates by improved PC-kriging," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
    12. Zuhal, Lavi Rizki & Faza, Ghifari Adam & Palar, Pramudita Satria & Liem, Rhea Patricia, 2021. "On dimensionality reduction via partial least squares for Kriging-based reliability analysis with active learning," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    13. Yuan, Xiukai & Lu, Zhenzhou, 2014. "Efficient approach for reliability-based optimization based on weighted importance sampling approach," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 107-114.
    14. Wang, Dapeng & Qiu, Haobo & Gao, Liang & Jiang, Chen, 2024. "A Subdomain uncertainty-guided Kriging method with optimized feasibility metric for time-dependent reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    15. Huang, Shi-Ya & Zhang, Shao-He & Liu, Lei-Lei, 2022. "A new active learning Kriging metamodel for structural system reliability analysis with multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    16. Wang, Xiaoping & Zhao, Wei & Chen, Yangyang & Li, Xueyan, 2024. "A novel performance measure approach for reliability-based design optimization with adaptive Barzilai-Borwein steps," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    17. Millar, Robert & Li, Hui & Li, Jinglai, 2023. "Multicanonical sequential Monte Carlo sampler for uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    18. Mei, Fabin & Chen, Hao & Yang, Wenying & Zhai, Guofu, 2024. "A hybrid physics-informed machine learning approach for time-dependent reliability assessment of electromagnetic relays," Reliability Engineering and System Safety, Elsevier, vol. 252(C).
    19. Ma, Yuan-Zhuo & Jin, Xiang-Xiang & Zhao, Xiang & Li, Hong-Shuang & Zhao, Zhen-Zhou & Xu, Chang, 2024. "Reliability-oriented global sensitivity analysis using subset simulation and space partition," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    20. Yu, Shui & Wu, Xiao & Zhao, Dongyu & Li, Yun, 2024. "A two-level surrogate framework for demand-objective time-variant reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.