IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024005830.html
   My bibliography  Save this article

A novel cross-entropy-based importance sampling method for cumulative time-dependent failure probability function

Author

Listed:
  • Lu, Yixin
  • Lu, Zhenzhou

Abstract

Cumulative time-dependent failure probability function (C-T-FPF) can reflect the effects of distribution parameters of random inputs and the upper bound of service time interval, which vary in their design domains, on time-dependent failure probability. However, solving C-T-FPF involves a time-consuming triple-layer framework. Thus, we propose an efficient method by combining cross-entropy-based importance sampling (IS) with adaptive Kriging model (CE-IS-AK). The innovations of CE-IS-AK include two aspects. Firstly, we construct a space augmented by both distribution parameters and the upper bound of service time interval, on which the triple-layer framework is decoupled to a single-layer one. And in the augmented space, an optimal IS density is proposed to reduce the required candidate sample size for estimating C-T-FPF. Secondly, we employ Gaussian mixture model (GMM) to approximate the optimal IS density, and the parameters in GMM are determined by minimizing the cross entropy of GMM and the optimal IS density. Moreover, to reduce the model evaluations in the proposed method, Kriging model is adaptively embedded to replace the actual model, and a first failure instant based learning function is proposed to train Kriging model adaptively. Due to the proposed single-layer framework and IS strategy assisted by the Kriging model, the efficiency is greatly improved for estimating C-T-FPF, which is validated by several examples.

Suggested Citation

  • Lu, Yixin & Lu, Zhenzhou, 2025. "A novel cross-entropy-based importance sampling method for cumulative time-dependent failure probability function," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005830
    DOI: 10.1016/j.ress.2024.110511
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024005830
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110511?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024005830. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.