IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics0951832023007998.html
   My bibliography  Save this article

Line sampling for time-variant failure probability estimation using an adaptive combination approach

Author

Listed:
  • Yuan, Xiukai
  • Zheng, Weiming
  • Zhao, Chaofan
  • Valdebenito, Marcos A.
  • Faes, Matthias G.R.
  • Dong, Yiwei

Abstract

An efficient sampling approach ‘Adaptive Combined Line Sampling’ is proposed for evaluating the ‘time-variant failure probability function’ (TFPF) of structures. Line Sampling is implemented in an adaptive and iterative way, where each individual Line Sampling run is carried out based on adaptively selected important directions, in order to ensure a sufficiently precise estimation of the TFPF over the whole time interval of analysis. An adaptive strategy and an optimal combination algorithm are developed for the practical implementation of the Line Sampling process. The adaptive strategy allows to determine the optimal important direction which is then used in the next Line Sampling run. The combination strategy allows to collect all these adaptive sampling runs together in an optimal way, which aims at minimising the coefficient of variation (C.o.V.) of the TFPF estimate. Due to these strategies, the proposed approach can estimate the TFPF in a more efficient way than the traditional Line Sampling, while guaranteeing that the C.o.V. of the estimate remains below a prescribed threshold over the whole time of analysis. Thus it can be seen as an extended version of classical Line Sampling specially tailored for time-variant reliability analysis. Examples are given to illustrate the performance of the proposed approach.

Suggested Citation

  • Yuan, Xiukai & Zheng, Weiming & Zhao, Chaofan & Valdebenito, Marcos A. & Faes, Matthias G.R. & Dong, Yiwei, 2024. "Line sampling for time-variant failure probability estimation using an adaptive combination approach," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007998
    DOI: 10.1016/j.ress.2023.109885
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023007998
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109885?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    2. Valdebenito, M.A. & Jensen, H.A. & Hernández, H.B. & Mehrez, L., 2018. "Sensitivity estimation of failure probability applying line sampling," Reliability Engineering and System Safety, Elsevier, vol. 171(C), pages 99-111.
    3. Zhang, Yang & Xu, Jun & Beer, Michael, 2023. "A single-loop time-variant reliability evaluation via a decoupling strategy and probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    4. Yuan, Xiukai & Qian, Yugeng & Chen, Jingqiang & Faes, Matthias G.R. & Valdebenito, Marcos A. & Beer, Michael, 2023. "Global failure probability function estimation based on an adaptive strategy and combination algorithm," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    5. Zhang, Kun & Chen, Ning & Zeng, Peng & Liu, Jian & Beer, Michael, 2022. "An efficient reliability analysis method for structures with hybrid time-dependent uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    6. Zhang, Xuan-Yi & Lu, Zhao-Hui & Wu, Shi-Yu & Zhao, Yan-Gang, 2021. "An Efficient Method for Time-Variant Reliability including Finite Element Analysis," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    7. Zhao, Zhao & Lu, Zhao-Hui & Zhang, Xuan-Yi & Zhao, Yan-Gang, 2022. "A nested single-loop Kriging model coupled with subset simulation for time-dependent system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    8. Wang, Zequn & Wang, Pingfeng, 2015. "A double-loop adaptive sampling approach for sensitivity-free dynamic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 346-356.
    9. Valdebenito, Marcos A. & Wei, Pengfei & Song, Jingwen & Beer, Michael & Broggi, Matteo, 2021. "Failure probability estimation of a class of series systems by multidomain Line Sampling," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    10. Du, Weiqi & Luo, Yuanxin & Wang, Yongqin, 2019. "Time-variant reliability analysis using the parallel subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 250-257.
    11. Li, Mingyang & Wang, Zequn, 2022. "LSTM-augmented deep networks for time-variant reliability assessment of dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouyang, Linhan & Che, Yushuai & Park, Chanseok & Chen, Yuejian, 2024. "A novel active learning Gaussian process modeling-based method for time-dependent reliability analysis considering mixed variables," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Zhang, Yang & Xu, Jun & Gardoni, Paolo, 2024. "A loading contribution degree analysis-based strategy for time-variant reliability analysis of structures under multiple loading stochastic processes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Wang, Dapeng & Qiu, Haobo & Gao, Liang & Jiang, Chen, 2024. "A Subdomain uncertainty-guided Kriging method with optimized feasibility metric for time-dependent reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    4. Zhao, Yunjie & Cheng, Xi & Zhang, Taihong & Wang, Lei & Shao, Wei & Wiart, Joe, 2023. "A global–local attention network for uncertainty analysis of ground penetrating radar modeling," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Jiang, Chen & Qiu, Haobo & Gao, Liang & Wang, Dapeng & Yang, Zan & Chen, Liming, 2020. "EEK-SYS: System reliability analysis through estimation error-guided adaptive Kriging approximation of multiple limit state surfaces," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    6. Ajenjo, Antoine & Ardillon, Emmanuel & Chabridon, Vincent & Cogan, Scott & Sadoulet-Reboul, Emeline, 2023. "Robustness evaluation of the reliability of penstocks combining line sampling and neural networks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Song, Zhouzhou & Zhang, Hanyu & Liu, Zhao & Zhu, Ping, 2023. "A two-stage Kriging estimation variance reduction method for efficient time-variant reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    8. Jiang, Xia & Lu, Zhenzhou, 2024. "A novel quantile-based sequential optimization and reliability assessment method for safety life analysis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    9. Dang, Chao & Valdebenito, Marcos A. & Wei, Pengfei & Song, Jingwen & Beer, Michael, 2024. "Bayesian active learning line sampling with log-normal process for rare-event probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    10. Hu, Yingshi & Lu, Zhenzhou & Jiang, Xia & Wei, Ning & Zhou, Changcong, 2021. "Time-dependent structural system reliability analysis model and its efficiency solution," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    11. Guo, Hongyuan & Zhang, Jiaxin & Dong, You & Frangopol, Dan M., 2024. "Probability-informed neural network-driven point-evolution kernel density estimation for time-dependent reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 249(C).
    12. Zhang, Long-Wen & Dang, Chao & Zhao, Yan-Gang, 2023. "An efficient method for accessing structural reliability indexes via power transformation family," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    13. Guan, Xiaoshu & Sun, Huabin & Hou, Rongrong & Xu, Yang & Bao, Yuequan & Li, Hui, 2023. "A deep reinforcement learning method for structural dominant failure modes searching based on self-play strategy," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    14. Jian Wang & Xiang Gao & Zhili Sun, 2021. "A Multilevel Simulation Method for Time-Variant Reliability Analysis," Sustainability, MDPI, vol. 13(7), pages 1-16, March.
    15. Li, Yuanfu & Chen, Yao & Hu, Zhenchao & Zhang, Huisheng, 2023. "Remaining useful life prediction of aero-engine enabled by fusing knowledge and deep learning models," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    16. Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    17. Yuan, Zixia & Xiong, Guojiang & Fu, Xiaofan & Mohamed, Ali Wagdy, 2023. "Improving fault tolerance in diagnosing power system failures with optimal hierarchical extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    18. Zhang, Yang & Xu, Jun & Beer, Michael, 2023. "A single-loop time-variant reliability evaluation via a decoupling strategy and probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    19. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    20. Bakeer, Tammam, 2023. "General partial safety factor theory for the assessment of the reliability of nonlinear structural systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007998. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.