IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v212y2021ics0951832021001769.html
   My bibliography  Save this article

Improved chance index and its solutions for quantifying the structural safety degree under twofold random uncertainty

Author

Listed:
  • Li, Fen
  • Lu, Zhenzhou
  • Feng, Kaixuan

Abstract

For the twofold random uncertainty problem of the random input variables with random distribution parameters, there still lacks a reasonable index to measure its safety degree. Aiming to this issue and starting from the characteristics of the failure probability function varying with the random distribution parameters under the twofold random uncertainty, an improved chance index (ICI) is proposed to quantify the safety degree of the structure. The proposed ICI takes into account the bilateral information of the statistical distribution of the failure probability function, and it uses the average of the upper and lower bilateral fractiles of the failure probability function with respect to a given confidence as the ICI. Compared with the existing primitive chance index (PCI), the information extracted by the ICI is more comprehensive. The ICI has self-duality, which can avoid the self-contradiction judgement resulted from the PCI. After the specific properties of the proposed ICI are proved, a differential interval approximation combined with numerical simulation is established for solving ICI, in which an adaptive Kriging model is nested for improving the efficiency, and multi-training-point based on cluster analysis and candidate sample pool reduction strategy are employed to improve the efficiency of constructing the Kriging model.

Suggested Citation

  • Li, Fen & Lu, Zhenzhou & Feng, Kaixuan, 2021. "Improved chance index and its solutions for quantifying the structural safety degree under twofold random uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:reensy:v:212:y:2021:i:c:s0951832021001769
    DOI: 10.1016/j.ress.2021.107635
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021001769
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107635?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. D. Ormoneit & H. White, 1999. "An efficient algorithm to compute maximum entropy densities," Econometric Reviews, Taylor & Francis Journals, vol. 18(2), pages 127-140.
    2. Jiang, Chen & Qiu, Haobo & Yang, Zan & Chen, Liming & Gao, Liang & Li, Peigen, 2019. "A general failure-pursuing sampling framework for surrogate-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 47-59.
    3. Cheng, Kai & Lu, Zhenzhou, 2021. "Adaptive Bayesian support vector regression model for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    4. Ling, Chunyan & Lu, Zhenzhou & Zhang, Xiaobo, 2020. "An efficient method based on AK-MCS for estimating failure probability function," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    5. Markus Gasser & Gerhart Schuëller, 1997. "Reliability-Based Optimization of structural systems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 46(3), pages 287-307, October.
    6. Wen, Zhixun & Pei, Haiqing & Liu, Hai & Yue, Zhufeng, 2016. "A Sequential Kriging reliability analysis method with characteristics of adaptive sampling regions and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 170-179.
    7. Xiao, Sinan & Oladyshkin, Sergey & Nowak, Wolfgang, 2020. "Reliability analysis with stratified importance sampling based on adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Song, Wanqing & Duan, Shouwu & Zio, Enrico & Kudreyko, Aleksey, 2022. "Multifractional and long-range dependent characteristics for remaining useful life prediction of cracking gas compressor," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Liu, Bin & Gao, Qun & Jin, Hongyu & Lei, Yu & Liu, Chunlu, 2022. "System indeterminacy analysis in the embodied energy network of global construction industries," Energy, Elsevier, vol. 261(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Da & Wang, Guoqiang & Lu, Yanpeng & Sun, Kangkang, 2020. "Reliability design and optimization of the planetary gear by a GA based on the DEM and Kriging model," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    2. Li, Guosheng & Ma, Shuaichao & Zhang, Dequan & Yang, Leping & Zhang, Weihua & Wu, Zeping, 2024. "An efficient sequential anisotropic RBF reliability analysis method with fast cross-validation and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Zhou, Changcong & Zhang, Hanlin & Valdebenito, Marcos A. & Zhao, Haodong, 2022. "A general hierarchical ensemble-learning framework for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    4. Song, Kunling & Zhang, Yugang & Shen, Linjie & Zhao, Qingyan & Song, Bifeng, 2021. "A failure boundary exploration and exploitation framework combining adaptive Kriging model and sample space partitioning strategy for efficient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Teixeira, Rui & Martinez-Pastor, Beatriz & Nogal, Maria & O’Connor, Alan, 2021. "Reliability analysis using a multi-metamodel complement-basis approach," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    6. Chunyan, Ling & Jingzhe, Lei & Way, Kuo, 2022. "Bayesian support vector machine for optimal reliability design of modular systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    7. Bakeer, Tammam, 2023. "General partial safety factor theory for the assessment of the reliability of nonlinear structural systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. Li, Junxiang & Chen, Jianqiao, 2019. "Solving time-variant reliability-based design optimization by PSO-t-IRS: A methodology incorporating a particle swarm optimization algorithm and an enhanced instantaneous response surface," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    9. Zhang, Jinhao & Gao, Liang & Xiao, Mi, 2020. "A composite-projection-outline-based approximation method for system reliability analysis with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    10. Yuan, Xiukai & Qian, Yugeng & Chen, Jingqiang & Faes, Matthias G.R. & Valdebenito, Marcos A. & Beer, Michael, 2023. "Global failure probability function estimation based on an adaptive strategy and combination algorithm," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Li, Xiaoke & Zhu, Heng & Chen, Zhenzhong & Ming, Wuyi & Cao, Yang & He, Wenbin & Ma, Jun, 2022. "Limit state Kriging modeling for reliability-based design optimization through classification uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    12. Chen, Xuyong & Xu, Zhifeng & Wu, Yushun & Wu, Qiaoyun, 2023. "Heuristic algorithms for reliability estimation based on breadth-first search of a grid tree," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    13. Mathpati, Yogesh Chandrakant & More, Kalpesh Sanjay & Tripura, Tapas & Nayek, Rajdip & Chakraborty, Souvik, 2023. "MAntRA: A framework for model agnostic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    14. Teixeira, Rui & Nogal, Maria & O’Connor, Alan & Martinez-Pastor, Beatriz, 2020. "Reliability assessment with density scanned adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    15. Zhang, Xufang & Wang, Lei & Sørensen, John Dalsgaard, 2019. "REIF: A novel active-learning function toward adaptive Kriging surrogate models for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 440-454.
    16. Wang, Jian & Sun, Zhili & Cao, Runan, 2021. "An efficient and robust Kriging-based method for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Li, Guofa & Wang, Tianzhe & Chen, Zequan & He, Jialong & Wang, Xiaoye & Du, Xuejiao, 2023. "RBIK-SS: A parallel adaptive structural reliability analysis method for rare failure events," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    18. Meng, Yuan & Zhang, Dequan & Shi, Baojun & Wang, Dapeng & Wang, Fang, 2024. "An active learning Kriging model with approximating parallel strategy for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    19. Li, Mingyang & Wang, Zequn, 2022. "LSTM-augmented deep networks for time-variant reliability assessment of dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    20. Jing, Zhao & Chen, Jianqiao & Li, Xu, 2019. "RBF-GA: An adaptive radial basis function metamodeling with genetic algorithm for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 42-57.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:212:y:2021:i:c:s0951832021001769. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.