IDEAS home Printed from https://ideas.repec.org/a/spr/mathme/v46y1997i3p287-307.html
   My bibliography  Save this article

Reliability-Based Optimization of structural systems

Author

Listed:
  • Markus Gasser
  • Gerhart Schuëller

Abstract

A method to carry out a Reliability-Based Optimization (RBO) of especially nonlinear structural systems is introduced. Statistical uncertainties involving both structural and loading properties are considered. The concept is based on the separation of structural reliability analyses and the optimization procedures. Two approaches are discussed, depending on the interaction of reliability analysis and mathematical programming and the way of representation of the limit state functions (LSF) of the structure. As, for cases of practical significance, the LSF is known only pointwise it is approximated by Response Surfaces (RS). For the response calculations Finite Element (FE) procedures are utilized. Failure probabilities are determined by applying variance reducing Monte Carlo simulation (MCS) techniques such as Importance Sampling (IS). Following the reliability analysis, the optimization procedure is controlled by the NLPQL algorithm. A numerical example in terms of a template ocean platform exemplifies the procedures. Copyright Physica-Verlag 1997

Suggested Citation

  • Markus Gasser & Gerhart Schuëller, 1997. "Reliability-Based Optimization of structural systems," Mathematical Methods of Operations Research, Springer;Gesellschaft für Operations Research (GOR);Nederlands Genootschap voor Besliskunde (NGB), vol. 46(3), pages 287-307, October.
  • Handle: RePEc:spr:mathme:v:46:y:1997:i:3:p:287-307
    DOI: 10.1007/BF01194858
    as

    Download full text from publisher

    File URL: http://hdl.handle.net/10.1007/BF01194858
    Download Restriction: Access to full text is restricted to subscribers.

    File URL: https://libkey.io/10.1007/BF01194858?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Xiukai & Qian, Yugeng & Chen, Jingqiang & Faes, Matthias G.R. & Valdebenito, Marcos A. & Beer, Michael, 2023. "Global failure probability function estimation based on an adaptive strategy and combination algorithm," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Liu, Wang-Sheng & Cheung, Sai Hung, 2017. "Reliability based design optimization with approximate failure probability function in partitioned design space," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 602-611.
    3. Karadeniz, Halil & ToÄŸan, Vedat & Vrouwenvelder, Ton, 2009. "An integrated reliability-based design optimization of offshore towers," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1510-1516.
    4. Yuan, Xiukai & Lu, Zhenzhou, 2014. "Efficient approach for reliability-based optimization based on weighted importance sampling approach," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 107-114.
    5. Li, Fen & Lu, Zhenzhou & Feng, Kaixuan, 2021. "Improved chance index and its solutions for quantifying the structural safety degree under twofold random uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    6. Ma, Yuan-Zhuo & Jin, Xiang-Xiang & Wu, Xi-Long & Xu, Chang & Li, Hong-Shuang & Zhao, Zhen-Zhou, 2023. "Reliability-based design optimization using adaptive Kriging-A single-loop strategy and a double-loop one," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Ling, Chunyan & Lu, Zhenzhou & Zhang, Xiaobo, 2020. "An efficient method based on AK-MCS for estimating failure probability function," Reliability Engineering and System Safety, Elsevier, vol. 201(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:mathme:v:46:y:1997:i:3:p:287-307. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.