IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v243y2024ics0951832023007536.html
   My bibliography  Save this article

A Subdomain uncertainty-guided Kriging method with optimized feasibility metric for time-dependent reliability analysis

Author

Listed:
  • Wang, Dapeng
  • Qiu, Haobo
  • Gao, Liang
  • Jiang, Chen

Abstract

Active learning strategy combined with single-loop Kriging method has attracted much attention for Time-dependent Reliability Analysis (TRA). Large sample pool across all time instants is required to comprehensively cover the failure surface. Identifying training samples with most existing methods requires assessing the response of the entire sample pool, leading to high time costs. Similarly, to assist in identifying critical sampling regions, evaluating failure probability with a large sample pool in each iteration is also time-consuming. Additionally, higher-order uncertainty information is typically ignored, impairing the sampling efficiency. To address these issues, a Subdomain Uncertainty-guided Kriging (SUK) Method is proposed. Stochastic processes are first equivalently converted to random variables. By simultaneously sampling random variables and time parameter, an equivalent sample pool with significantly reduced size is generated for adaptive sampling. With a concise subdomain uncertainty assessment function, critical sampling region, i.e. sensitive subdomain, is distinguished efficiently. By comprehensively considering both the expectation and standard deviation of feasibility function, a novel Optimized Feasibility Metric (OFM) is then proposed for active learning. The proportion of misclassified samples is analytically deduced as stopping criterion. Finally, comparison results on four examples demonstrate the good performances of the proposed subdomain uncertainty-guided Kriging method.

Suggested Citation

  • Wang, Dapeng & Qiu, Haobo & Gao, Liang & Jiang, Chen, 2024. "A Subdomain uncertainty-guided Kriging method with optimized feasibility metric for time-dependent reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
  • Handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007536
    DOI: 10.1016/j.ress.2023.109839
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023007536
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109839?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Zhili & Wang, Jian & Li, Rui & Tong, Cao, 2017. "LIF: A new Kriging based learning function and its application to structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 152-165.
    2. Wang, Dapeng & Qiu, Haobo & Gao, Liang & Jiang, Chen, 2021. "A single-loop Kriging coupled with subset simulation for time-dependent reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    3. Wang, Zequn & Chen, Wei, 2016. "Time-variant reliability assessment through equivalent stochastic process transformation," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 166-175.
    4. Xiao, Ning-Cong & Yuan, Kai & Zhan, Hongyou, 2022. "System reliability analysis based on dependent Kriging predictions and parallel learning strategy," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    5. Shi, Yan & Lu, Zhenzhou & He, Ruyang & Zhou, Yicheng & Chen, Siyu, 2020. "A novel learning function based on Kriging for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    6. Cao, Runan & Sun, Zhili & Wang, Jian & Guo, Fanyi, 2022. "A single-loop reliability analysis strategy for time-dependent problems with small failure probability," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    7. Jiang, Chen & Qiu, Haobo & Yang, Zan & Chen, Liming & Gao, Liang & Li, Peigen, 2019. "A general failure-pursuing sampling framework for surrogate-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 183(C), pages 47-59.
    8. Zhang, Yang & Xu, Jun & Beer, Michael, 2023. "A single-loop time-variant reliability evaluation via a decoupling strategy and probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    9. Zhang, Kun & Chen, Ning & Zeng, Peng & Liu, Jian & Beer, Michael, 2022. "An efficient reliability analysis method for structures with hybrid time-dependent uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    10. Zhao, Zhao & Lu, Zhao-Hui & Zhang, Xuan-Yi & Zhao, Yan-Gang, 2022. "A nested single-loop Kriging model coupled with subset simulation for time-dependent system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ouyang, Linhan & Che, Yushuai & Park, Chanseok & Chen, Yuejian, 2024. "A novel active learning Gaussian process modeling-based method for time-dependent reliability analysis considering mixed variables," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Zhang, Yang & Xu, Jun & Gardoni, Paolo, 2024. "A loading contribution degree analysis-based strategy for time-variant reliability analysis of structures under multiple loading stochastic processes," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Song, Zhouzhou & Zhang, Hanyu & Liu, Zhao & Zhu, Ping, 2023. "A two-stage Kriging estimation variance reduction method for efficient time-variant reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Zhang, Yang & Xu, Jun & Beer, Michael, 2023. "A single-loop time-variant reliability evaluation via a decoupling strategy and probability distribution reconstruction," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    5. Cui, Da & Wang, Guoqiang & Lu, Yanpeng & Sun, Kangkang, 2020. "Reliability design and optimization of the planetary gear by a GA based on the DEM and Kriging model," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    6. Li, Junxiang & Chen, Jianqiao, 2019. "Solving time-variant reliability-based design optimization by PSO-t-IRS: A methodology incorporating a particle swarm optimization algorithm and an enhanced instantaneous response surface," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    7. Zhang, Jinhao & Gao, Liang & Xiao, Mi, 2020. "A composite-projection-outline-based approximation method for system reliability analysis with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    8. Zhang, Yu & Dong, You & Xu, Jun, 2023. "An accelerated active learning Kriging model with the distance-based subdomain and a new stopping criterion for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    9. Yuan, Xiukai & Zheng, Weiming & Zhao, Chaofan & Valdebenito, Marcos A. & Faes, Matthias G.R. & Dong, Yiwei, 2024. "Line sampling for time-variant failure probability estimation using an adaptive combination approach," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    10. Meng, Yuan & Zhang, Dequan & Shi, Baojun & Wang, Dapeng & Wang, Fang, 2024. "An active learning Kriging model with approximating parallel strategy for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    11. Jiang, Chen & Qiu, Haobo & Gao, Liang & Wang, Dapeng & Yang, Zan & Chen, Liming, 2020. "EEK-SYS: System reliability analysis through estimation error-guided adaptive Kriging approximation of multiple limit state surfaces," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    12. Song, Kunling & Zhang, Yugang & Shen, Linjie & Zhao, Qingyan & Song, Bifeng, 2021. "A failure boundary exploration and exploitation framework combining adaptive Kriging model and sample space partitioning strategy for efficient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    13. Zhao, Zhao & Zhao, Yan-Gang & Li, Pei-Pei, 2023. "A novel decoupled time-variant reliability-based design optimization approach by improved extreme value moment method," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    14. Li, Bingyi & Jia, Xiang & Long, Jiahui, 2024. "AK–TSAGL: A two-stage hybrid algorithm combining global exploration and local exploitation based on active learning for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    15. Xiao, Mi & Zhang, Jinhao & Gao, Liang, 2020. "A system active learning Kriging method for system reliability-based design optimization with a multiple response model," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    16. Chen, Zequan & He, Jialong & Li, Guofa & Yang, Zhaojun & Wang, Tianzhe & Du, Xuejiao, 2024. "Fast convergence strategy for adaptive structural reliability analysis based on kriging believer criterion and importance sampling," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    17. Dang, Chao & Wei, Pengfei & Faes, Matthias G.R. & Valdebenito, Marcos A. & Beer, Michael, 2022. "Parallel adaptive Bayesian quadrature for rare event estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    18. Li, Wenxiong & Geng, Rong & Chen, Suiyin, 2024. "CSP-free adaptive Kriging surrogate model method for reliability analysis with small failure probability," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    19. Wang, Dapeng & Qiu, Haobo & Gao, Liang & Jiang, Chen, 2021. "A single-loop Kriging coupled with subset simulation for time-dependent reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    20. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:243:y:2024:i:c:s0951832023007536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.