IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v244y2024ics0951832023008384.html
   My bibliography  Save this article

A two-level surrogate framework for demand-objective time-variant reliability-based design optimization

Author

Listed:
  • Yu, Shui
  • Wu, Xiao
  • Zhao, Dongyu
  • Li, Yun

Abstract

Complex engineering problems in the real world often involve uncertainties and require time-consuming simulations and experiments, hindering the efficiency of constraints processing. Additionally, practical engineering problems may have varying demands that pose new challenges for dealing with dynamic environments. However, most existing methods focus on immediate demands, making it inevitable to undergo tedious procedures to find feasible solutions. To address these issues, this paper proposes a demand-objective time-variant reliability-based design optimization framework to meet different demands in varying environments. Meanwhile, a corresponding two-level surrogate-based solving strategy is developed to reduce the computational resources required. The framework consists of two stages: time-variant reliability-based constraint handling and demand-objective optimization. An adaptive two-level surrogate method is proposed for time-variant reliability-based constraint handling by combining Kriging to reduce computational costs associated with evaluating constraints. This paper introduces moderate, conservative, and radical models for demand-objective optimization, combining the two-level surrogate method to deal with dynamic cost functions with different demands. Also, a new constrained minimax optimization method is developed for the radical model, which is the trickiest but very useful in practical engineering problems so that the algorithm can converge quickly. Finally, some examples are demonstrated to specify the proposed framework in applications.

Suggested Citation

  • Yu, Shui & Wu, Xiao & Zhao, Dongyu & Li, Yun, 2024. "A two-level surrogate framework for demand-objective time-variant reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832023008384
    DOI: 10.1016/j.ress.2023.109924
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023008384
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109924?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jian & Gong, Weijie & Yue, Xinxin & Shi, Maolin & Chen, Lei, 2022. "Efficient reliability analysis using prediction-oriented active sparse polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    2. Roy, Atin & Chakraborty, Subrata, 2023. "Support vector machine in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    3. Zhao, Zhao & Zhao, Yan-Gang & Li, Pei-Pei, 2023. "A novel decoupled time-variant reliability-based design optimization approach by improved extreme value moment method," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Yu, Shui & Ren, Yuyao & Wu, Xiao & Guo, Peng & Li, Yun, 2024. "Dynamic pruning-based Bayesian support vector regression for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    5. Li, Junxiang & Chen, Jianqiao, 2019. "Solving time-variant reliability-based design optimization by PSO-t-IRS: A methodology incorporating a particle swarm optimization algorithm and an enhanced instantaneous response surface," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    6. Song, Zhouzhou & Zhang, Hanyu & Liu, Zhao & Zhu, Ping, 2023. "A two-stage Kriging estimation variance reduction method for efficient time-variant reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    7. Yang, Meide & Zhang, Dequan & Jiang, Chao & Han, Xu & Li, Qing, 2021. "A hybrid adaptive Kriging-based single loop approach for complex reliability-based design optimization problems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Jiang, Chen & Yan, Yifang & Wang, Dapeng & Qiu, Haobo & Gao, Liang, 2021. "Global and local Kriging limit state approximation for time-dependent reliability-based design optimization through wrong-classification probability," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    9. P. Parpas & B. Rustem, 2009. "An Algorithm for the Global Optimization of a Class of Continuous Minimax Problems," Journal of Optimization Theory and Applications, Springer, vol. 141(2), pages 461-473, May.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Song, Zhouzhou & Zhang, Hanyu & Liu, Zhao & Zhu, Ping, 2023. "A two-stage Kriging estimation variance reduction method for efficient time-variant reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Jiang, Zhiyuan & Huang, Xianzhen & Wang, Bingxiang & Liao, Xin & Liu, Huizhen & Ding, Pengfei, 2024. "Time-dependent reliability-based design optimization of main shaft bearings in wind turbines involving mixed-integer variables," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Li, Guosheng & Ma, Shuaichao & Zhang, Dequan & Yang, Leping & Zhang, Weihua & Wu, Zeping, 2024. "An efficient sequential anisotropic RBF reliability analysis method with fast cross-validation and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Zhao, Zhao & Zhao, Yan-Gang & Li, Pei-Pei, 2023. "A novel decoupled time-variant reliability-based design optimization approach by improved extreme value moment method," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Jiang, Xia & Lu, Zhenzhou, 2024. "A novel quantile-based sequential optimization and reliability assessment method for safety life analysis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    6. Okoro, Aghatise & Khan, Faisal & Ahmed, Salim, 2023. "Dependency effect on the reliability-based design optimization of complex offshore structure," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    7. Li, Xiaoke & Zhu, Heng & Chen, Zhenzhong & Ming, Wuyi & Cao, Yang & He, Wenbin & Ma, Jun, 2022. "Limit state Kriging modeling for reliability-based design optimization through classification uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    8. Wang, Xiaoping & Zhao, Wei & Chen, Yangyang & Li, Xueyan, 2024. "A novel performance measure approach for reliability-based design optimization with adaptive Barzilai-Borwein steps," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    9. Zhang, Xiaobo & Lu, Zhenzhou & Cheng, Kai, 2021. "Reliability index function approximation based on adaptive double-loop Kriging for reliability-based design optimization," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Li, Chen & Wen, Jiong-Ran & Wan, Jing & Taylan, Osman & Fei, Cheng-Wei, 2024. "Adaptive directed support vector machine method for the reliability evaluation of aeroengine structure," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    11. Pei, Pei & Zhou, Tong, 2023. "One-step look-ahead policy for active learning reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    12. Song, Chaolin & Shafieezadeh, Abdollah & Xiao, Rucheng & Sun, Bin, 2024. "Analytical robust design optimization for hybrid design variables: An active-learning methodology based on polynomial chaos Kriging," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    13. Zheng, Xiaohu & Yao, Wen & Zhang, Xiaoya & Qian, Weiqi & Zhang, Hairui, 2023. "Parameterized coefficient fine-tuning-based polynomial chaos expansion method for sphere-biconic reentry vehicle reliability analysis and design," Reliability Engineering and System Safety, Elsevier, vol. 240(C).
    14. Ouyang, Linhan & Che, Yushuai & Park, Chanseok & Chen, Yuejian, 2024. "A novel active learning Gaussian process modeling-based method for time-dependent reliability analysis considering mixed variables," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    15. Yu, Shui & Ren, Yuyao & Wu, Xiao & Guo, Peng & Li, Yun, 2024. "Dynamic pruning-based Bayesian support vector regression for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    16. Wang, Zihan & Daeipour, Mohamad & Xu, Hongyi, 2023. "Quantification and propagation of Aleatoric uncertainties in topological structures," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    17. Huang, Peng & Li, He & Gu, Yingkui & Qiu, Guangqi, 2024. "An extended moment-based trajectory accuracy reliability analysis method of robot manipulators with random and interval uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    18. Yang, Meide & Zhang, Dequan & Jiang, Chao & Han, Xu & Li, Qing, 2021. "A hybrid adaptive Kriging-based single loop approach for complex reliability-based design optimization problems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    19. Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    20. Li Wang & Feng Guo, 2014. "Semidefinite relaxations for semi-infinite polynomial programming," Computational Optimization and Applications, Springer, vol. 58(1), pages 133-159, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832023008384. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.