IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v228y2022ics0951832022004574.html
   My bibliography  Save this article

Bayesian support vector machine for optimal reliability design of modular systems

Author

Listed:
  • Chunyan, Ling
  • Jingzhe, Lei
  • Way, Kuo

Abstract

In a modular system, uncertainties will spread among coupled modules and cause system failure. To cope with this issue, the reliability-based design optimization (RBDO) of modular systems came into being. However, the solution of this design task is a nested triple-loop process, making the computational burden unaffordable for real-world systems. Thus, this paper endeavors to effectively mitigate this computational effort. The individual module feasible approach is first proposed to tackle the coupling effects of modules, whereby, the original optimization problem is converted into a conventional one. Then, the Bayesian-inference-based support vector machine is utilized to build the alternative model for the actual probabilistic constraint function, in the augmented reliability space. The alternative model is constructed using small number of model evaluations, which possesses enough precision everywhere in the augmented confidence region. Finally, the optimal decision scheme is obtained by solving the formulated conventional RBDO using the alternative model. The performance of the proposed method is investigated using several examples.

Suggested Citation

  • Chunyan, Ling & Jingzhe, Lei & Way, Kuo, 2022. "Bayesian support vector machine for optimal reliability design of modular systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
  • Handle: RePEc:eee:reensy:v:228:y:2022:i:c:s0951832022004574
    DOI: 10.1016/j.ress.2022.108840
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022004574
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108840?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Mara, Thierry A. & Becker, William E., 2021. "Polynomial chaos expansion for sensitivity analysis of model output with dependent inputs," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    2. Xiao, Mi & Zhang, Jinhao & Gao, Liang, 2020. "A system active learning Kriging method for system reliability-based design optimization with a multiple response model," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    3. Leimeister, Mareike & Kolios, Athanasios, 2021. "Reliability-based design optimization of a spar-type floating offshore wind turbine support structure," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    4. El Moçayd, Nabil & Seaid, Mohammed, 2021. "Data-driven polynomial chaos expansions for characterization of complex fluid rheology: Case study of phosphate slurry," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    5. Lee, Seunggyu, 2021. "Monte Carlo simulation using support vector machine and kernel density for failure probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    6. Cheng, Kai & Lu, Zhenzhou, 2021. "Adaptive Bayesian support vector regression model for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    7. Ling, Chunyan & Lu, Zhenzhou & Zhang, Xiaobo, 2020. "An efficient method based on AK-MCS for estimating failure probability function," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    8. Wang, Jian & Sun, Zhili & Cao, Runan, 2021. "An efficient and robust Kriging-based method for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Long, Q. & Xie, M. & Ng, S.H. & Levitin, Gregory, 2008. "Reliability analysis and optimization of weighted voting systems with continuous states input," European Journal of Operational Research, Elsevier, vol. 191(1), pages 240-252, November.
    10. Altaee, Ali & Cipolina, Andrea, 2019. "Modelling and optimization of modular system for power generation from a salinity gradient," Renewable Energy, Elsevier, vol. 141(C), pages 139-147.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sun, Bin & Li, Yan & Zhang, Yangyang & Guo, Tong, 2024. "Multi-source heterogeneous data fusion prediction technique for the utility tunnel fire detection," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    2. Yu, Shui & Ren, Yuyao & Wu, Xiao & Guo, Peng & Li, Yun, 2024. "Dynamic pruning-based Bayesian support vector regression for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Ting & Lu, Zhenzhou & Yun, Wanying, 2023. "An efficient algorithm for analyzing multimode structure system reliability by a new learning function of most reducing average probability of misjudging system state," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Bakeer, Tammam, 2023. "General partial safety factor theory for the assessment of the reliability of nonlinear structural systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    3. Zhang, Zheng & Wang, Pan & Hu, Huanhuan & Li, Lei & Li, Haihe & Yue, Zhufeng, 2022. "Efficient reliability-based design optimization for hydraulic pipeline with adaptive sampling region," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    4. Yao, Wen & Zheng, Xiaohu & Zhang, Jun & Wang, Ning & Tang, Guijian, 2023. "Deep adaptive arbitrary polynomial chaos expansion: A mini-data-driven semi-supervised method for uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Liu, Qiang, 2021. "Reliability evaluation of two-stage evidence classification system considering preference and error," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    6. Abdollahi, Azam & Amini, Ali & Hariri-Ardebili, Mohammad Amin, 2022. "An uncertainty-aware dynamic shape optimization framework: Gravity dam design," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    7. Guo, Tiexin & Wang, Hongji & Li, Jinglai & Wang, Hongqiao, 2024. "Sampling-based adaptive design strategy for failure probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    8. Thapa, Mishal & Missoum, Samy, 2022. "Uncertainty quantification and global sensitivity analysis of composite wind turbine blades," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Yang, Meide & Zhang, Dequan & Jiang, Chao & Han, Xu & Li, Qing, 2021. "A hybrid adaptive Kriging-based single loop approach for complex reliability-based design optimization problems," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    10. Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    11. Okoro, Aghatise & Khan, Faisal & Ahmed, Salim, 2023. "Dependency effect on the reliability-based design optimization of complex offshore structure," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    12. Haoyuan, Shen & Yizhong, Ma & Chenglong, Lin & Jian, Zhou & Lijun, Liu, 2023. "Hierarchical Bayesian support vector regression with model parameter calibration for reliability modeling and prediction," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    13. Wang, Yanzhong & Xie, Bin & E, Shiyuan, 2022. "Adaptive relevance vector machine combined with Markov-chain-based importance sampling for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    14. Huang, Shi-Ya & Zhang, Shao-He & Liu, Lei-Lei, 2022. "A new active learning Kriging metamodel for structural system reliability analysis with multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    15. Mathpati, Yogesh Chandrakant & More, Kalpesh Sanjay & Tripura, Tapas & Nayek, Rajdip & Chakraborty, Souvik, 2023. "MAntRA: A framework for model agnostic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    16. Kröker, Ilja & Oladyshkin, Sergey, 2022. "Arbitrary multi-resolution multi-wavelet-based polynomial chaos expansion for data-driven uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    17. Li, Guosheng & Ma, Shuaichao & Zhang, Dequan & Yang, Leping & Zhang, Weihua & Wu, Zeping, 2024. "An efficient sequential anisotropic RBF reliability analysis method with fast cross-validation and parallelizability," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    18. Wang, Zhenqiang & Jia, Gaofeng, 2023. "Extended sample-based approach for efficient sensitivity analysis of group of random variables," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    19. Li, Fen & Lu, Zhenzhou & Feng, Kaixuan, 2021. "Improved chance index and its solutions for quantifying the structural safety degree under twofold random uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    20. Qi, Yaqun & Jin, Ping & Cai, Guobiao & Li, Ruizhi, 2022. "A Bi-stage Multi-objective Reliability-based Design Optimization Using Surrogate Model for Reusable Thrust Chambers," Reliability Engineering and System Safety, Elsevier, vol. 221(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:228:y:2022:i:c:s0951832022004574. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.