IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v224y2022ics0951832022001600.html
   My bibliography  Save this article

A general model for life-cycle cost analysis of Condition-Based Maintenance enabled by PHM capabilities

Author

Listed:
  • Compare, Michele
  • Antonello, Federico
  • Pinciroli, Luca
  • Zio, Enrico

Abstract

In this work, we propose a general modelling approach to estimate the life cycle cost of a system equipped with Prognostics and Health Management (PHM) capabilities, undergoing a Condition-Based Maintenance (CBM) policy. The approach builds on the Markov Chain theoretical framework, with transition probabilities linked to both PHM performance metrics of the literature and a novel metric. The developed approach can be used to guide economic decisions about CBM development, whichever the PHM algorithm is but provided that its performance metrics are estimated. The model is validated through a case study concerning a mechanical component of a train bogie affected by fatigue degradation, considering two different prognostic algorithms: Particle Filtering and a Model-Based approach.

Suggested Citation

  • Compare, Michele & Antonello, Federico & Pinciroli, Luca & Zio, Enrico, 2022. "A general model for life-cycle cost analysis of Condition-Based Maintenance enabled by PHM capabilities," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
  • Handle: RePEc:eee:reensy:v:224:y:2022:i:c:s0951832022001600
    DOI: 10.1016/j.ress.2022.108499
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022001600
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108499?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    2. Al-Najjar, Basim & Alsyouf, Imad, 2004. "Enhancing a company's profitability and competitiveness using integrated vibration-based maintenance: A case study," European Journal of Operational Research, Elsevier, vol. 157(3), pages 643-657, September.
    3. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    4. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    5. Hu, Yang & Miao, Xuewen & Si, Yong & Pan, Ershun & Zio, Enrico, 2022. "Prognostics and health management: A review from the perspectives of design, development and decision," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Rocchetta, R. & Bellani, L. & Compare, M. & Zio, E. & Patelli, E., 2019. "A reinforcement learning framework for optimal operation and maintenance of power grids," Applied Energy, Elsevier, vol. 241(C), pages 291-301.
    7. Michele Compare & Luca Bellani & Enrico Zio, 2017. "Availability Model of a PHM-Equipped Component," Post-Print hal-01652232, HAL.
    8. Quintanar-Gago, David A. & Nelson, Pamela F. & Díaz-Sánchez, à ngeles & Boldrick, Michael S., 2021. "Assessment of steam turbine blade failure and damage mechanisms using a Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    9. Zio, Enrico & Compare, Michele, 2013. "Evaluating maintenance policies by quantitative modeling and analysis," Reliability Engineering and System Safety, Elsevier, vol. 109(C), pages 53-65.
    10. Compare, Michele & Bellani, Luca & Zio, Enrico, 2017. "Reliability model of a component equipped with PHM capabilities," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 4-11.
    11. Chiachío, Juan & Jalón, María L. & Chiachío, Manuel & Kolios, Athanasios, 2020. "A Markov chains prognostics framework for complex degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    12. Yoon, Joung Taek & Youn, Byeng D. & Yoo, Minji & Kim, Yunhan & Kim, Sooho, 2019. "Life-cycle maintenance cost analysis framework considering time-dependent false and missed alarms for fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 181-192.
    13. Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2021. "Optimal Prognostics and Health Management-driven inspection and maintenance strategies for industrial systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. He, Rui & Tian, Zhigang & Wang, Yifei & Zuo, Mingjian & Guo, Ziwei, 2023. "Condition-based maintenance optimization for multi-component systems considering prognostic information and degraded working efficiency," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Hachem, Hassan & Vu, Hai Canh & Fouladirad, Mitra, 2024. "Different methods for RUL prediction considering sensor degradation," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    3. Zou, Xinyu & Tao, Laifa & Sun, Lulu & Wang, Chao & Ma, Jian & Lu, Chen, 2023. "A case-learning-based paradigm for quantitative recommendation of fault diagnosis algorithms: A case study of gearbox," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Dui, Hongyan & Lu, Yaohui & Chen, Liwei, 2024. "Importance-based system cost management and failure risk analysis for different phases in life cycle," Reliability Engineering and System Safety, Elsevier, vol. 242(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    2. Mancuso, A. & Compare, M. & Salo, A. & Zio, E., 2021. "Optimal Prognostics and Health Management-driven inspection and maintenance strategies for industrial systems," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    3. Compare, Michele & Bellani, Luca & Zio, Enrico, 2019. "Optimal allocation of prognostics and health management capabilities to improve the reliability of a power transmission network," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 164-180.
    4. Compare, Michele & Bellani, Luca & Zio, Enrico, 2017. "Reliability model of a component equipped with PHM capabilities," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 4-11.
    5. Zou, Xinyu & Tao, Laifa & Sun, Lulu & Wang, Chao & Ma, Jian & Lu, Chen, 2023. "A case-learning-based paradigm for quantitative recommendation of fault diagnosis algorithms: A case study of gearbox," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Mandelli, Diego & Wang, Congjian & Agarwal, Vivek & Lin, Linyu & Manjunatha, Koushik A., 2024. "Reliability modeling in a predictive maintenance context: A margin-based approach," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Zheng, Rui & Najafi, Seyedvahid & Zhang, Yingzhi, 2022. "A recursive method for the health assessment of systems using the proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    8. Meng, Huixing & Liu, Xuan & Xing, Jinduo & Zio, Enrico, 2022. "A method for economic evaluation of predictive maintenance technologies by integrating system dynamics and evolutionary game modelling," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    9. Meng, Huixing & Geng, Mengyao & Xing, Jinduo & Zio, Enrico, 2022. "A hybrid method for prognostics of lithium-ion batteries capacity considering regeneration phenomena," Energy, Elsevier, vol. 261(PB).
    10. Michele Compare & Luca Bellani & Enrico Zio, 2017. "Availability Model of a PHM-Equipped Component," Post-Print hal-01652232, HAL.
    11. Aizpurua, J.I. & Stewart, B.G. & McArthur, S.D.J. & Penalba, M. & Barrenetxea, M. & Muxika, E. & Ringwood, J.V., 2022. "Probabilistic forecasting informed failure prognostics framework for improved RUL prediction under uncertainty: A transformer case study," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    12. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    13. Zuo, Jian & Cadet, Catherine & Li, Zhongliang & Bérenguer, Christophe & Outbib, Rachid, 2024. "A deterioration-aware energy management strategy for the lifetime improvement of a multi-stack fuel cell system subject to a random dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    14. Costa, Nahuel & Sánchez, Luciano, 2022. "Variational encoding approach for interpretable assessment of remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    15. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    16. Badía, F.G. & Berrade, M.D. & Cha, Ji Hwan & Lee, Hyunju, 2018. "Optimal replacement policy under a general failure and repair model: Minimal versus worse than old repair," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 362-372.
    17. Guo, Chiming & Wang, Wenbin & Guo, Bo & Si, Xiaosheng, 2013. "A maintenance optimization model for mission-oriented systems based on Wiener degradation," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 183-194.
    18. Levitin, Gregory & Finkelstein, Maxim & Huang, Hong-Zhong, 2019. "Scheduling of imperfect inspections for reliability critical systems with shock-driven defects and delayed failures," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 89-98.
    19. Hao, Zhaojun & Di Maio, Francesco & Zio, Enrico, 2023. "A sequential decision problem formulation and deep reinforcement learning solution of the optimization of O&M of cyber-physical energy systems (CPESs) for reliable and safe power production and supply," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    20. Han, Te & Li, Yan-Fu, 2022. "Out-of-distribution detection-assisted trustworthy machinery fault diagnosis approach with uncertainty-aware deep ensembles," Reliability Engineering and System Safety, Elsevier, vol. 226(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:224:y:2022:i:c:s0951832022001600. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.