IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v237y2023ics0951832023002685.html
   My bibliography  Save this article

Health evaluation of axial piston pumps based on density weighted support vector data description

Author

Listed:
  • Chao, Qun
  • Shao, Yuechen
  • Liu, Chengliang
  • Yang, Xiaoxue

Abstract

Axial piston pump is the power source of hydraulic systems and its health evaluation is crucial for the condition monitoring of hydraulic systems. Previous studies focused on the fault diagnosis of axial piston pumps but paid little attention to their health evaluation. In addition, labeled faulty samples are often insufficient for training supervised fault diagnosis models in practical applications. Therefore, this work aims to develop a health evaluation model for axial piston pumps, which only requires normal samples for model training. The proposed method uses density weighted support vector data description (SVDD) to determine the normal baseline level of an axial piston pump and then constructs a dimensionless health index to score the pump's health condition. A test bench was built to collect pressure and vibration signals of an actual axial piston pump at different health levels. Results show that the proposed method can effectively evaluate the pump's health condition through the quantifiable health index.

Suggested Citation

  • Chao, Qun & Shao, Yuechen & Liu, Chengliang & Yang, Xiaoxue, 2023. "Health evaluation of axial piston pumps based on density weighted support vector data description," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
  • Handle: RePEc:eee:reensy:v:237:y:2023:i:c:s0951832023002685
    DOI: 10.1016/j.ress.2023.109354
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023002685
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109354?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yong & Xin, Yuqi & Liu, Zhi-wei & Chi, Ming & Ma, Guijun, 2022. "Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    2. Tang, Shengnan & Zhu, Yong & Yuan, Shouqi, 2022. "Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    3. Ma, Zhonghai & Liao, Haitao & Gao, Jianhang & Nie, Songlin & Geng, Yugang, 2023. "Physics-Informed Machine Learning for Degradation Modeling of an Electro-Hydrostatic Actuator System," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    4. Kumar, Anil & Parkash, Chander & Vashishtha, Govind & Tang, Hesheng & Kundu, Pradeep & Xiang, Jiawei, 2022. "State-space modeling and novel entropy-based health indicator for dynamic degradation monitoring of rolling element bearing," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    5. Chen, Bin & Yu, Songhao & Yu, Yang & Zhou, Yilin, 2020. "Acoustical damage detection of wind turbine blade using the improved incremental support vector data description," Renewable Energy, Elsevier, vol. 156(C), pages 548-557.
    6. Wei, Yupeng & Wu, Dazhong & Terpenny, Janis, 2021. "Learning the health index of complex systems using dynamic conditional variational autoencoders," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Qiao, Yajing & Wang, Shaoping & Shi, Jian & Liu, Di & Tao, Mo, 2024. "Reliability model based on fault energy dissipation for mechatronic system," Reliability Engineering and System Safety, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Wen, Guangrui & Liu, Zimin & Su, Yu & Chen, Xuefeng, 2023. "Hybrid system response model for condition monitoring of bearings under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Wang, Yueyao & Lee, I-Chen & Hong, Yili & Deng, Xinwei, 2022. "Building degradation index with variable selection for multivariate sensory data," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    3. Tang, Shengnan & Zhu, Yong & Yuan, Shouqi, 2022. "Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    4. Liu, Yi & Xiang, Hang & Jiang, Zhansi & Xiang, Jiawei, 2023. "Second-order transient-extracting S transform for fault feature extraction in rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    5. Liu, Jie & Xu, Huoyao & Peng, Xiangyu & Wang, Junlang & He, Chaoming, 2023. "Reliable composite fault diagnosis of hydraulic systems based on linear discriminant analysis and multi-output hybrid kernel extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Tong, Jianfeng & Liu, Zhenxing & Zhang, Yong & Zheng, Xiujuan & Jin, Junyang, 2023. "Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load," Energy, Elsevier, vol. 282(C).
    7. Lin, Yan-Hui & Chang, Liang & Guan, Lu-Xin, 2024. "Enhanced stochastic recurrent hybrid model for RUL Predictions via Semi-supervised learning," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    8. Wei, Yupeng & Wu, Dazhong & Terpenny, Janis, 2024. "Remaining useful life prediction using graph convolutional attention networks with temporal convolution-aware nested residual connections," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    9. Kamei, Sayaka & Taghipour, Sharareh, 2023. "A comparison study of centralized and decentralized federated learning approaches utilizing the transformer architecture for estimating remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    10. Dong, Yutong & Jiang, Hongkai & Wu, Zhenghong & Yang, Qiao & Liu, Yunpeng, 2023. "Digital twin-assisted multiscale residual-self-attention feature fusion network for hypersonic flight vehicle fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    11. Wei, Yupeng & Wu, Dazhong, 2023. "Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    12. Zhu, Zuanyu & Cheng, Junsheng & Wang, Ping & Wang, Jian & Kang, Xin & Yang, Yu, 2023. "A novel fault diagnosis framework for rotating machinery with hierarchical multiscale symbolic diversity entropy and robust twin hyperdisk-based tensor machine," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    13. Wang, Chu & Dou, Manfeng & Li, Zhongliang & Outbib, Rachid & Zhao, Dongdong & Zuo, Jian & Wang, Yuanlin & Liang, Bin & Wang, Peng, 2023. "Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    14. Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    15. Zhang, Zhongwei & Jiao, Zonghao & Li, Youjia & Shao, Mingyu & Dai, Xiangjun, 2024. "Intelligent fault diagnosis of bearings driven by double-level data fusion based on multichannel sample fusion and feature fusion under time-varying speed conditions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    16. Grzegorz Filo, 2023. "Artificial Intelligence Methods in Hydraulic System Design," Energies, MDPI, vol. 16(8), pages 1-19, April.
    17. Dai, Menghang & Liu, Zhiliang & Wang, Jinrui & Zuo, Mingjian, 2024. "Physics-driven feature alignment combined with dynamic distribution adaptation for three-cylinder drilling pump cross-speed fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    18. Guo, Junyu & Yang, Yulai & Li, He & Wang, Jiang & Tang, Aimin & Shan, Daiwei & Huang, Bangkui, 2024. "A hybrid deep learning model towards fault diagnosis of drilling pump," Applied Energy, Elsevier, vol. 372(C).
    19. Fernández, Juan & Chiachío, Juan & Barros, José & Chiachío, Manuel & Kulkarni, Chetan S., 2024. "Physics-guided recurrent neural network trained with approximate Bayesian computation: A case study on structural response prognostics," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    20. Zhou, Liang & Wang, Huawei, 2024. "An adaptive multi-scale feature fusion and adaptive mixture-of-experts multi-task model for industrial equipment health status assessment and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 248(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:237:y:2023:i:c:s0951832023002685. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.