Improved multi-gate mixture-of-experts framework for multi-step prediction of gas load
Author
Abstract
Suggested Citation
DOI: 10.1016/j.energy.2023.128344
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Kursa, Miron B. & Rudnicki, Witold R., 2010. "Feature Selection with the Boruta Package," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 36(i11).
- Zhang, Yong & Xin, Yuqi & Liu, Zhi-wei & Chi, Ming & Ma, Guijun, 2022. "Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
- Du, Jian & Zheng, Jianqin & Liang, Yongtu & Lu, Xinyi & Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Shahzad, Khurram & Rashid, Muhammad Imtiaz & Ali, Arshid Mahmood & Liao, Qi & Wang, Bohong, 2022. "A hybrid deep learning framework for predicting daily natural gas consumption," Energy, Elsevier, vol. 257(C).
- Hribar, Rok & Potočnik, Primož & Šilc, Jurij & Papa, Gregor, 2019. "A comparison of models for forecasting the residential natural gas demand of an urban area," Energy, Elsevier, vol. 167(C), pages 511-522.
- Zhang, Yong & Tu, Lei & Xue, Zhiwei & Li, Sai & Tian, Lulu & Zheng, Xiujuan, 2022. "Weight optimized unscented Kalman filter for degradation trend prediction of lithium-ion battery with error compensation strategy," Energy, Elsevier, vol. 251(C).
- Li, Fengyun & Zheng, Haofeng & Li, Xingmei & Yang, Fei, 2021. "Day-ahead city natural gas load forecasting based on decomposition-fusion technique and diversified ensemble learning model," Applied Energy, Elsevier, vol. 303(C).
- Ding, Jia & Zhao, Yuxuan & Jin, Junyang, 2023. "Forecasting natural gas consumption with multiple seasonal patterns," Applied Energy, Elsevier, vol. 337(C).
- Chen, Ying & Xu, Xiuqin & Koch, Thorsten, 2020. "Day-ahead high-resolution forecasting of natural gas demand and supply in Germany with a hybrid model," Applied Energy, Elsevier, vol. 262(C).
- Li, Chuang & Li, Guojie & Wang, Keyou & Han, Bei, 2022. "A multi-energy load forecasting method based on parallel architecture CNN-GRU and transfer learning for data deficient integrated energy systems," Energy, Elsevier, vol. 259(C).
- Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Prediction of fluctuation loads based on GARCH family-CatBoost-CNNLSTM," Energy, Elsevier, vol. 263(PE).
- Federico Scarpa & Vincenzo Bianco, 2017. "Assessing the Quality of Natural Gas Consumption Forecasting: An Application to the Italian Residential Sector," Energies, MDPI, vol. 10(11), pages 1-13, November.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Lin, Zijie & Xie, Linbo & Zhang, Siyuan, 2024. "A compound framework for short-term gas load forecasting combining time-enhanced perception transformer and two-stage feature extraction," Energy, Elsevier, vol. 298(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Lin, Zijie & Xie, Linbo & Zhang, Siyuan, 2024. "A compound framework for short-term gas load forecasting combining time-enhanced perception transformer and two-stage feature extraction," Energy, Elsevier, vol. 298(C).
- Fang, Yu & Jia, Chunhong & Wang, Xin & Min, Fan, 2024. "A fusion gas load prediction model with three-way residual error amendment," Energy, Elsevier, vol. 294(C).
- Liyuan Shao & Yong Zhang & Xiujuan Zheng & Xin He & Yufeng Zheng & Zhiwei Liu, 2023. "A Review of Remaining Useful Life Prediction for Energy Storage Components Based on Stochastic Filtering Methods," Energies, MDPI, vol. 16(3), pages 1-22, February.
- Ding, Jia & Zhao, Yuxuan & Jin, Junyang, 2023. "Forecasting natural gas consumption with multiple seasonal patterns," Applied Energy, Elsevier, vol. 337(C).
- Lu, Hongfang & Ma, Xin & Ma, Minda, 2021. "A hybrid multi-objective optimizer-based model for daily electricity demand prediction considering COVID-19," Energy, Elsevier, vol. 219(C).
- Beyca, Omer Faruk & Ervural, Beyzanur Cayir & Tatoglu, Ekrem & Ozuyar, Pinar Gokcin & Zaim, Selim, 2019. "Using machine learning tools for forecasting natural gas consumption in the province of Istanbul," Energy Economics, Elsevier, vol. 80(C), pages 937-949.
- Bartłomiej Gaweł & Andrzej Paliński, 2021. "Long-Term Natural Gas Consumption Forecasting Based on Analog Method and Fuzzy Decision Tree," Energies, MDPI, vol. 14(16), pages 1-26, August.
- Du, Jian & Zheng, Jianqin & Liang, Yongtu & Wang, Bohong & Klemeš, Jiří Jaromír & Lu, Xinyi & Tu, Renfu & Liao, Qi & Xu, Ning & Xia, Yuheng, 2023. "A knowledge-enhanced graph-based temporal-spatial network for natural gas consumption prediction," Energy, Elsevier, vol. 263(PD).
- Paul Anton Verwiebe & Stephan Seim & Simon Burges & Lennart Schulz & Joachim Müller-Kirchenbauer, 2021. "Modeling Energy Demand—A Systematic Literature Review," Energies, MDPI, vol. 14(23), pages 1-58, November.
- Asma Shaheen & Javed Iqbal, 2018. "Spatial Distribution and Mobility Assessment of Carcinogenic Heavy Metals in Soil Profiles Using Geostatistics and Random Forest, Boruta Algorithm," Sustainability, MDPI, vol. 10(3), pages 1-20, March.
- Ramón Ferri-García & María del Mar Rueda, 2022. "Variable selection in Propensity Score Adjustment to mitigate selection bias in online surveys," Statistical Papers, Springer, vol. 63(6), pages 1829-1881, December.
- Manuel J. García Rodríguez & Vicente Rodríguez Montequín & Francisco Ortega Fernández & Joaquín M. Villanueva Balsera, 2019. "Public Procurement Announcements in Spain: Regulations, Data Analysis, and Award Price Estimator Using Machine Learning," Complexity, Hindawi, vol. 2019, pages 1-20, November.
- Sangjin Kim & Jong-Min Kim, 2019. "Two-Stage Classification with SIS Using a New Filter Ranking Method in High Throughput Data," Mathematics, MDPI, vol. 7(6), pages 1-16, May.
- Du, Jian & Zheng, Jianqin & Liang, Yongtu & Xia, Yuheng & Wang, Bohong & Shao, Qi & Liao, Qi & Tu, Renfu & Xu, Bin & Xu, Ning, 2023. "Deeppipe: An intelligent framework for predicting mixed oil concentration in multi-product pipeline," Energy, Elsevier, vol. 282(C).
- Zhao-Yue Chen & Hervé Petetin & Raúl Fernando Méndez Turrubiates & Hicham Achebak & Carlos Pérez García-Pando & Joan Ballester, 2024. "Population exposure to multiple air pollutants and its compound episodes in Europe," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
- Schrader, Silja & Graham, Sonia & Campbell, Rebecca & Height, Kaitlyn & Hawkes, Gina, 2024. "Grower attitudes and practices toward area-wide management of cropping weeds in Australia," Land Use Policy, Elsevier, vol. 137(C).
- Kamei, Sayaka & Taghipour, Sharareh, 2023. "A comparison study of centralized and decentralized federated learning approaches utilizing the transformer architecture for estimating remaining useful life," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
- Zeng, Huibin & Shao, Bilin & Dai, Hongbin & Yan, Yichuan & Tian, Ning, 2023. "Natural gas demand response strategy considering user satisfaction and load volatility under dynamic pricing," Energy, Elsevier, vol. 277(C).
- Oleksandr Castello & Marina Resta, 2023. "A Machine-Learning-Based Approach for Natural Gas Futures Curve Modeling," Energies, MDPI, vol. 16(12), pages 1-22, June.
- Darya Pyatkina & Tamara Shcherbina & Vadim Samusenkov & Irina Razinkina & Mariusz Sroka, 2021. "Modeling and Management of Power Supply Enterprises’ Cash Flows," Energies, MDPI, vol. 14(4), pages 1-17, February.
More about this item
Keywords
Improved multi-gate mixture-of-experts; Multi-step prediction; Deep learning; Dilate loss function; Boruta algorithm;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:282:y:2023:i:c:s0360544223017383. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.