Acoustical damage detection of wind turbine blade using the improved incremental support vector data description
Author
Abstract
Suggested Citation
DOI: 10.1016/j.renene.2020.04.096
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tang, Jialin & Soua, Slim & Mares, Cristinel & Gan, Tat-Hean, 2016. "An experimental study of acoustic emission methodology for in service condition monitoring of wind turbine blades," Renewable Energy, Elsevier, vol. 99(C), pages 170-179.
- Habibi, Hossein & Cheng, Liang & Zheng, Haitao & Kappatos, Vassilios & Selcuk, Cem & Gan, Tat-Hean, 2015. "A dual de-icing system for wind turbine blades combining high-power ultrasonic guided waves and low-frequency forced vibrations," Renewable Energy, Elsevier, vol. 83(C), pages 859-870.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Chao, Qun & Shao, Yuechen & Liu, Chengliang & Yang, Xiaoxue, 2023. "Health evaluation of axial piston pumps based on density weighted support vector data description," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
- Wang, Ziqi & Liu, Changliang & Yan, Feng, 2022. "Condition monitoring of wind turbine based on incremental learning and multivariate state estimation technique," Renewable Energy, Elsevier, vol. 184(C), pages 343-360.
- Wang, Bingkai & Sun, Wenlei & Wang, Hongwei & Xu, Tiantian & Zou, Yi, 2024. "Research on rapid calculation method of wind turbine blade strain for digital twin," Renewable Energy, Elsevier, vol. 221(C).
- Khazaee, Meghdad & Derian, Pierre & Mouraud, Anthony, 2022. "A comprehensive study on Structural Health Monitoring (SHM) of wind turbine blades by instrumenting tower using machine learning methods," Renewable Energy, Elsevier, vol. 199(C), pages 1568-1579.
- Luo, Kai & Chen, Liang & Liang, Wei, 2022. "Structural health monitoring of carbon fiber reinforced polymer composite laminates for offshore wind turbine blades based on dual maximum correlation coefficient method," Renewable Energy, Elsevier, vol. 201(P1), pages 1163-1175.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiménez, Alfredo Arcos & García Márquez, Fausto Pedro & Moraleda, Victoria Borja & Gómez Muñoz, Carlos Quiterio, 2019. "Linear and nonlinear features and machine learning for wind turbine blade ice detection and diagnosis," Renewable Energy, Elsevier, vol. 132(C), pages 1034-1048.
- Kaewniam, Panida & Cao, Maosen & Alkayem, Nizar Faisal & Li, Dayang & Manoach, Emil, 2022. "Recent advances in damage detection of wind turbine blades: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
- García Márquez, Fausto Pedro & Peco Chacón, Ana María, 2020. "A review of non-destructive testing on wind turbines blades," Renewable Energy, Elsevier, vol. 161(C), pages 998-1010.
- Madi, Ezieddin & Pope, Kevin & Huang, Weimin & Iqbal, Tariq, 2019. "A review of integrating ice detection and mitigation for wind turbine blades," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 269-281.
- Liu, Wenyi, 2016. "Design and kinetic analysis of wind turbine blade-hub-tower coupled system," Renewable Energy, Elsevier, vol. 94(C), pages 547-557.
- Sun, Shilin & Wang, Tianyang & Chu, Fulei, 2022. "In-situ condition monitoring of wind turbine blades: A critical and systematic review of techniques, challenges, and futures," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Yan Li & He Shen & Wenfeng Guo, 2021. "Simulation and Experimental Study on the Ultrasonic Micro-Vibration De-Icing Method for Wind Turbine Blades," Energies, MDPI, vol. 14(24), pages 1-15, December.
- Dong, Xinghui & Gao, Di & Li, Jia & Jincao, Zhang & Zheng, Kai, 2020. "Blades icing identification model of wind turbines based on SCADA data," Renewable Energy, Elsevier, vol. 162(C), pages 575-586.
- Mingwei Lei & Xingfen Wang & Meihua Wang & Yitao Cheng, 2024. "Improved YOLOv5 Based on Multi-Strategy Integration for Multi-Category Wind Turbine Surface Defect Detection," Energies, MDPI, vol. 17(8), pages 1-25, April.
- Chandrasekhar, Kartik & Stevanovic, Nevena & Cross, Elizabeth J. & Dervilis, Nikolaos & Worden, Keith, 2021. "Damage detection in operational wind turbine blades using a new approach based on machine learning," Renewable Energy, Elsevier, vol. 168(C), pages 1249-1264.
- Wang, Yibing & Xu, Yuanming & Lei, Yuyong, 2018. "An effect assessment and prediction method of ultrasonic de-icing for composite wind turbine blades," Renewable Energy, Elsevier, vol. 118(C), pages 1015-1023.
- Ma, Liqun & Zhang, Zichen & Gao, Linyue & Liu, Yang & Hu, Hui, 2020. "An exploratory study on using Slippery-Liquid-Infused-Porous-Surface (SLIPS) for wind turbine icing mitigation," Renewable Energy, Elsevier, vol. 162(C), pages 2344-2360.
- Feng Gao & Xiaojiang Wu & Qiang Liu & Juncheng Liu & Xiyun Yang, 2019. "Fault Simulation and Online Diagnosis of Blade Damage of Large-Scale Wind Turbines," Energies, MDPI, vol. 12(3), pages 1-16, February.
- Papatheou, Evangelos & Dervilis, Nikolaos & Maguire, Andrew E. & Campos, Carles & Antoniadou, Ifigeneia & Worden, Keith, 2017. "Performance monitoring of a wind turbine using extreme function theory," Renewable Energy, Elsevier, vol. 113(C), pages 1490-1502.
- Jiawei Jiang & Yizhou Shen & Yangjiangshan Xu & Zhen Wang & Jie Tao & Senyun Liu & Weilan Liu & Haifeng Chen, 2024. "An energy-free strategy to elevate anti-icing performance of superhydrophobic materials through interfacial airflow manipulation," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
- Xiaowen Song & Zhitai Xing & Yan Jia & Xiaojuan Song & Chang Cai & Yinan Zhang & Zekun Wang & Jicai Guo & Qingan Li, 2022. "Review on the Damage and Fault Diagnosis of Wind Turbine Blades in the Germination Stage," Energies, MDPI, vol. 15(20), pages 1-17, October.
- Yang, Xiyun & Zhang, Yanfeng & Lv, Wei & Wang, Dong, 2021. "Image recognition of wind turbine blade damage based on a deep learning model with transfer learning and an ensemble learning classifier," Renewable Energy, Elsevier, vol. 163(C), pages 386-397.
- Guo, Jihong & Liu, Chao & Cao, Jinfeng & Jiang, Dongxiang, 2021. "Damage identification of wind turbine blades with deep convolutional neural networks," Renewable Energy, Elsevier, vol. 174(C), pages 122-133.
- Dimitris Al. Katsaprakakis & Nikos Papadakis & Ioannis Ntintakis, 2021. "A Comprehensive Analysis of Wind Turbine Blade Damage," Energies, MDPI, vol. 14(18), pages 1-31, September.
- Wang, Yibing & Xu, Yuanming & Huang, Qi, 2017. "Progress on ultrasonic guided waves de-icing techniques in improving aviation energy efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 638-645.
More about this item
Keywords
Wind turbine blade; Damage detection; Acoustic signal; Support vector data description; Incremental learning;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:156:y:2020:i:c:p:548-557. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.