IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v230y2023ics0951832022005701.html
   My bibliography  Save this article

Second-order transient-extracting S transform for fault feature extraction in rolling bearings

Author

Listed:
  • Liu, Yi
  • Xiang, Hang
  • Jiang, Zhansi
  • Xiang, Jiawei

Abstract

Intelligent fault diagnosis methods can obtain promising results in ensuring the safety and reliability of key parts of rotating machinery. However, the problems are the insufficient amount of data during equipment acceptance period and the assumption that the collected data are high quality which directly affects the reliability of promising results. To solve the above problems, based on the characteristics of fault features, a time-frequency-based method is introduced to analyze the impulse components. Nevertheless, the performance of the time-frequency method is deeply relies on the selection of the window length. To avoid the influence of uncertain parameters, an accurate time-frequency analysis method named the second-order transient-extracting S transform based on the S-transform is proposed in this paper. The proposed method not only rectifies the group delay bias but also produces a highly concentrated time-frequency representation even in noise-surrounded and irrelevant components. The effectiveness of the proposed method for monitoring the health of key parts health is verified through simulated and experimental investigations. The accuracy of the proposed method in feature detection is higher than that of other methods.

Suggested Citation

  • Liu, Yi & Xiang, Hang & Jiang, Zhansi & Xiang, Jiawei, 2023. "Second-order transient-extracting S transform for fault feature extraction in rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005701
    DOI: 10.1016/j.ress.2022.108955
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022005701
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108955?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xu, Yadong & Yan, Xiaoan & Sun, Beibei & Liu, Zheng, 2022. "Global contextual residual convolutional neural networks for motor fault diagnosis under variable-speed conditions," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Jiao, Jinyang & Zhao, Ming & Lin, Jing & Liang, Kaixuan, 2019. "Hierarchical discriminating sparse coding for weak fault feature extraction of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 41-54.
    3. Vrignat, Pascal & Kratz, Frédéric & Avila, Manuel, 2022. "Sustainable manufacturing, maintenance policies, prognostics and health management: A literature review," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    4. Tang, Shengnan & Zhu, Yong & Yuan, Shouqi, 2022. "Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    5. Kumar, Anil & Parkash, Chander & Vashishtha, Govind & Tang, Hesheng & Kundu, Pradeep & Xiang, Jiawei, 2022. "State-space modeling and novel entropy-based health indicator for dynamic degradation monitoring of rolling element bearing," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    6. Xiao, Sinan & Lu, Zhenzhou & Wang, Pan, 2018. "Multivariate global sensitivity analysis for dynamic models based on wavelet analysis," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 20-30.
    7. Guo, Jianchun & Si, Zetian & Liu, Yi & Li, Jiahao & Li, Yanting & Xiang, Jiawei, 2022. "Dynamic time warping using graph similarity guided symplectic geometry mode decomposition to detect bearing faults," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    8. Peters, Benjamin & Yildirim, Murat & Gebraeel, Nagi & Paynabar, Kamran, 2020. "Severity-based diagnosis for vehicular electric systems with multiple, interacting fault modes," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    9. Saraygord Afshari, Sajad & Enayatollahi, Fatemeh & Xu, Xiangyang & Liang, Xihui, 2022. "Machine learning-based methods in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Wen, Guangrui & Liu, Zimin & Su, Yu & Chen, Xuefeng, 2023. "Hybrid system response model for condition monitoring of bearings under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    2. Chaleshtori, Amir Eshaghi & Aghaie, Abdollah, 2024. "A novel bearing fault diagnosis approach using the Gaussian mixture model and the weighted principal component analysis," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Sahebkar Farkhani, Jalal & Çelik, Özgür & Ma, Kaiqi & Bak, Claus Leth & Chen, Zhe, 2024. "A comprehensive review of potential protection methods for VSC multi-terminal HVDC systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Yulin & Li, Lei & Yang, Jun, 2022. "Convolutional kernel aggregated domain adaptation for intelligent fault diagnosis with label noise," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    2. Li, Sheng & Ji, J.C. & Xu, Yadong & Sun, Xiuquan & Feng, Ke & Sun, Beibei & Wang, Yulin & Gu, Fengshou & Zhang, Ke & Ni, Qing, 2023. "IFD-MDCN: Multibranch denoising convolutional networks with improved flow direction strategy for intelligent fault diagnosis of rolling bearings under noisy conditions," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Yang, Zhe & Baraldi, Piero & Zio, Enrico, 2022. "A method for fault detection in multi-component systems based on sparse autoencoder-based deep neural networks," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    4. Chao, Qun & Shao, Yuechen & Liu, Chengliang & Yang, Xiaoxue, 2023. "Health evaluation of axial piston pumps based on density weighted support vector data description," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    5. Zhou, Taotao & Han, Te & Droguett, Enrique Lopez, 2022. "Towards trustworthy machine fault diagnosis: A probabilistic Bayesian deep learning framework," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    6. Liu, Jie & Xu, Huoyao & Peng, Xiangyu & Wang, Junlang & He, Chaoming, 2023. "Reliable composite fault diagnosis of hydraulic systems based on linear discriminant analysis and multi-output hybrid kernel extreme learning machine," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Wei, Pengfei & Zheng, Yu & Fu, Jiangfeng & Xu, Yuannan & Gao, Weikai, 2023. "An expected integrated error reduction function for accelerating Bayesian active learning of failure probability," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    8. Pan, Yongjun & Sun, Yu & Li, Zhixiong & Gardoni, Paolo, 2023. "Machine learning approaches to estimate suspension parameters for performance degradation assessment using accurate dynamic simulations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    9. Li, Xinglin & Xie, Luofeng & Deng, Bo & Lu, Houhong & Zhu, Yangyang & Yin, Ming & Yin, Guofu & Gao, Wenxiang, 2024. "Deep dynamic high-order graph convolutional network for wear fault diagnosis of hydrodynamic mechanical seal," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    10. Chen, Jun-Yu & Feng, Yun-Wen & Teng, Da & Lu, Cheng & Fei, Cheng-Wei, 2022. "Support vector machine-based similarity selection method for structural transient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    11. Phan, Hieu Chi & Dhar, Ashutosh Sutra & Bui, Nang Duc, 2023. "Reliability assessment of pipelines crossing strike-slip faults considering modeling uncertainties using ANN models," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    12. Dhulipala, Somayajulu L.N. & Shields, Michael D. & Chakroborty, Promit & Jiang, Wen & Spencer, Benjamin W. & Hales, Jason D. & Labouré, Vincent M. & Prince, Zachary M. & Bolisetti, Chandrakanth & Che, 2022. "Reliability estimation of an advanced nuclear fuel using coupled active learning, multifidelity modeling, and subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    13. Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
    14. Zhou, Haoxuan & Wang, Bingsen & Zio, Enrico & Wen, Guangrui & Liu, Zimin & Su, Yu & Chen, Xuefeng, 2023. "Hybrid system response model for condition monitoring of bearings under time-varying operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    15. Luo, Changqi & Zhu, Shun-Peng & Keshtegar, Behrooz & Niu, Xiaopeng & Taylan, Osman, 2023. "An enhanced uniform simulation approach coupled with SVR for efficient structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    16. Dong, Yutong & Jiang, Hongkai & Wu, Zhenghong & Yang, Qiao & Liu, Yunpeng, 2023. "Digital twin-assisted multiscale residual-self-attention feature fusion network for hypersonic flight vehicle fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    17. Zhu, Zuanyu & Cheng, Junsheng & Wang, Ping & Wang, Jian & Kang, Xin & Yang, Yu, 2023. "A novel fault diagnosis framework for rotating machinery with hierarchical multiscale symbolic diversity entropy and robust twin hyperdisk-based tensor machine," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    18. Zhuang, Liangliang & Xu, Ancha & Wang, Xiao-Lin, 2023. "A prognostic driven predictive maintenance framework based on Bayesian deep learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    19. Grzegorz Filo, 2023. "Artificial Intelligence Methods in Hydraulic System Design," Energies, MDPI, vol. 16(8), pages 1-19, April.
    20. Zhang, Qing & Tang, Lv & Xuan, Jianping & Shi, Tielin & Li, Rui, 2023. "An uncertainty relevance metric-based domain adaptation fault diagnosis method to overcome class relevance caused confusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005701. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.