Standby mode transfer schedule minimizing downtime of 1-out-of-N system with storage
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2023.109322
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal loading of repairable system with perfect product storage," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Predetermined standby mode transfers in 1-out-of-N systems with resource-constrained elements," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Yen, Tseng-Chang & Wang, Kuo-Hsiung, 2020. "Cost benefit analysis of four retrial systems with warm standby units and imperfect coverage," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimizing uploading and downloading pace distribution in system with two non-identical storage units," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Jinting Wang & Nan Xie & Nan Yang, 2021. "Reliability analysis of a two-dissimilar-unit warm standby repairable system with priority in use," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 50(4), pages 792-814, February.
- Q. Zhai & R. Peng & L. Xing & J. Yang, 2015. "Reliability of demand‐based warm standby systems subject to fault level coverage," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(3), pages 380-393, May.
- Guo, Linhan & Li, Ruiyang & Wang, Yu & Yang, Jun & Liu, Yu & Chen, Yiming & Zhang, Jianguo, 2023. "Availability for multi-component k-out-of-n: G warm-standby system in series with shut-off rule of suspended animation," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Co-residence based data theft game in cloud system with virtual machine replication and cancellation," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yanshun, 2021. "Joint optimal mission aborting and replacement and maintenance scheduling in dual-unit standby systems," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Jia, Heping & Peng, Rui & Yang, Li & Wu, Tianyi & Liu, Dunnan & Li, Yanbin, 2022. "Reliability evaluation of demand-based warm standby systems with capacity storage," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
- Zhang, Tieling & Xie, Min & Horigome, Michio, 2006. "Availability and reliability of k-out-of-(M+N):G warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 91(4), pages 381-387.
- Wu, Hui & Li, Yan-Fu & Bérenguer, Christophe, 2020. "Optimal inspection and maintenance for a repairable k-out-of-n: G warm standby system," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
- Bai, Senyang & Jia, Xiang & Cheng, Zhijun & Guo, Bo, 2021. "Operation strategy optimization for on-orbit satellite subsystems considering multiple active switching," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Minimizing mission cost for production system with unreliable storage," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
- Huang, Wei & Loman, James & Song, Thomas, 2015. "A reliability model of a warm standby configuration with two identical sets of units," Reliability Engineering and System Safety, Elsevier, vol. 133(C), pages 237-245.
- Ardakan, Mostafa Abouei & Amini, Hanieh & Juybari, Mohammad N., 2022. "Prescheduled switching time: A new strategy for systems with standby components," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
- Levitin, Gregory & Xing, Liudong & Haim, Hanoch Ben & Dai, Yuanshun, 2019. "Optimal structure of series system with 1-out-of-n warm standby subsystems performing operation and rescue functions," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 523-531.
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Co-optimization of state dependent loading and mission abort policy in heterogeneous warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 151-158.
- Gregory Levitin & Liudong Xing & Yuanshun Dai, 2020. "Mission Abort Policy for Systems with Observable States of Standby Components," Risk Analysis, John Wiley & Sons, vol. 40(10), pages 1900-1912, October.
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2021. "Influence of storage on mission success probability of m-out-of-n standby systems with reusable elements," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Wang, Chaonan & Wang, Xiaolei & Xing, Liudong & Guan, Quanlong & Yang, Chunhui & Yu, Min, 2021. "A Fast and Accurate Reliability Approximation Method for Heterogeneous Cold Standby Sparing Systems," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
- Marqusee, Jeffrey & Jenket, Donald, 2020. "Reliability of emergency and standby diesel generators: Impact on energy resiliency solutions," Applied Energy, Elsevier, vol. 268(C).
- Li, Xiang-Yu & Li, Yan-Feng & Huang, Hong-Zhong, 2020. "Redundancy allocation problem of phased-mission system with non-exponential components and mixed redundancy strategy," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yanshun, 2022. "Minimum cost replacement and maintenance scheduling in dual-dissimilar-unit standby systems," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
- Hsieh, Tsung-Jung, 2021. "Component mixing with a cold standby strategy for the redundancy allocation problem," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Optimizing corrective maintenance for multistate systems with storage," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
- Mansour Shrahili & Mohamed Kayid, 2023. "Stochastic Orderings of the Idle Time of Inactive Standby Systems," Mathematics, MDPI, vol. 11(20), pages 1-21, October.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Predetermined standby mode transfers in 1-out-of-N systems with resource-constrained elements," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Co-optimizing component allocation and activation sequence in heterogeneous 1-out-of-n standby system exposed to shocks," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Allocation and activation of resource constrained shock-exposed components in heterogeneous 1-out-of-n standby system," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal sequencing of elements activation in 1-out-of-n warm standby system with storage," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Heterogeneous 1-out-of-n standby systems with limited unit operation time," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimizing uploading and downloading pace distribution in system with two non-identical storage units," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Optimizing corrective maintenance for multistate systems with storage," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
- Alkaff, Abdullah, 2023. "Optimum warmness levels in general standby systems," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Loading policy minimizing cumulative unsupplied demand of production system with storage," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
- Zhao, Xian & Wang, Xinlei & Dai, Ying & Qiu, Qingan, 2024. "Joint optimization of loading, mission abort and rescue site selection policies for UAV," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimal aborting policy for shock exposed missions with random rescue time," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Optimal system loading and aborting in additive multi-attempt missions," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal mission aborting in multistate systems with storage," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
- Meng, Sa & Xing, Liudong & Levitin, Gregory, 2024. "Optimizing component activation and operation aborting in missions with consecutive attempts and common abort command," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Zhao, Xian & Dai, Ying & Qiu, Qingan & Wu, Yaguang, 2022. "Joint optimization of mission aborts and allocation of standby components considering mission loss," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Unrepairable system with consecutively used imperfect storage units," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Using kamikaze components in multi-attempt missions with abort option," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "A new self-adaptive mission aborting policy for systems operating in uncertain random shock environment," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Zhao, Xian & Liu, Haoran & Wu, Yaguang & Qiu, Qingan, 2023. "Joint optimization of mission abort and system structure considering dynamic tasks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
- Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimizing partial component activation policy in multi-attempt missions," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
More about this item
Keywords
Mission downtime; Mode transfer schedule; Numerical algorithm; Standby system; Storage;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:237:y:2023:i:c:s0951832023002363. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.