IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v244y2024ics0951832024000309.html
   My bibliography  Save this article

Joint optimization of loading, mission abort and rescue site selection policies for UAV

Author

Listed:
  • Zhao, Xian
  • Wang, Xinlei
  • Dai, Ying
  • Qiu, Qingan

Abstract

Unmanned Aerial Vehicles (UAVs) have increasingly played a significant role in transportation activities, while the security challenges posed by UAVs are becoming more prominent. This paper explores a joint optimization problem involving loading, mission abort, and rescue site selection policies to meet random cargo demand while minimizing the total cost associated with cargo damage and UAV failures. When the condition of the UAV deteriorates beyond a certain threshold, the transportation mission can be aborted, thereby reducing the risk of failure. Subsequently, the UAV is required to proceed to the nearest rescue sites for assistance. The duration of the rescue depends on the distance between the rescue site and the UAV's position at the time of mission abort. Given that the probability of UAV failure during the rescue procedure increases with the rescue duration, the strategic selection of rescue sites becomes crucial in enhancing UAV survivability. Optimization models are subsequently developed to determine the optimal loading level, abort threshold, and distribution of rescue sites, with the objectives of maximizing system survivability and minimizing expected costs. Finally, a case study is conducted to illustrate the substantial impact of the proposed policies on enhancing UAV survivability and reducing operational costs.

Suggested Citation

  • Zhao, Xian & Wang, Xinlei & Dai, Ying & Qiu, Qingan, 2024. "Joint optimization of loading, mission abort and rescue site selection policies for UAV," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
  • Handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832024000309
    DOI: 10.1016/j.ress.2024.109955
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024000309
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.109955?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhao, Xian & Chai, Xiaofei & Sun, Jinglei & Qiu, Qingan, 2021. "Joint optimization of mission abort and component switching policies for multistate warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    2. Cha, Ji Hwan & Finkelstein, Maxim & Levitin, Gregory, 2018. "Optimal mission abort policy for partially repairable heterogeneous systems," European Journal of Operational Research, Elsevier, vol. 271(3), pages 818-825.
    3. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Optimal task aborting and sequencing in time constrained multi-task multi-attempt missions," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    4. Zhao, Xian & Liu, Haoran & Wu, Yaguang & Qiu, Qingan, 2023. "Joint optimization of mission abort and system structure considering dynamic tasks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    5. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Using kamikaze components in multi-attempt missions with abort option," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    6. Cheng, Guoqing & Li, Ling & Shangguan, Chunxia & Yang, Nan & Jiang, Bo & Tao, Ningrong, 2023. "Optimal joint inspection and mission abort policy for a partially observable system," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    7. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2020. "State-based mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    8. Gregory Levitin & Maxim Finkelstein, 2018. "Optimal Mission Abort Policy for Systems Operating in a Random Environment," Risk Analysis, John Wiley & Sons, vol. 38(4), pages 795-803, April.
    9. Liu, Lujie & Yang, Jun, 2023. "A dynamic mission abort policy for the swarm executing missions and its solution method by tailored deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Yang, Ao & Qiu, Qingan & Zhu, Mingren & Cui, Lirong & Chen, Weilin & Chen, Jianhui, 2022. "Condition-based maintenance strategy for redundant systems with arbitrary structures using improved reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    11. Eryilmaz, Serkan, 2020. "Age-based preventive maintenance for coherent systems with applications to consecutive-k-out-of-n and related systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    12. Levitin, Gregory & Finkelstein, Maxim & Huang, Hong-Zong, 2020. "Optimal mission abort policies for multistate systems," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    13. Levitin, Gregory & Finkelstein, Maxim & Dai, Yuanshun, 2018. "Mission abort policy balancing the uncompleted mission penalty and system loss risk," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 194-201.
    14. Levitin, Gregory & Xing, Liudong & Dai, Yanshun, 2021. "Joint optimal mission aborting and replacement and maintenance scheduling in dual-unit standby systems," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Wang, Jingjing & Qiu, Qingan & Wang, Huanhuan & Lin, Cong, 2021. "Optimal condition-based preventive maintenance policy for balanced systems," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    16. Yan, Rui & Zhu, Xiaoping & Zhu, Xiaoning & Peng, Rui, 2022. "Optimal routes and aborting strategies of trucks and drones under random attacks," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    17. Qiu, Qingan & Kou, Meng & Chen, Ke & Deng, Qiao & Kang, Fengming & Lin, Cong, 2021. "Optimal stopping problems for mission oriented systems considering time redundancy," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    18. Tseremoglou, Iordanis & Bombelli, Alessandro & Santos, Bruno F., 2022. "A combined forecasting and packing model for air cargo loading: A risk-averse framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    19. Peng, Rui, 2018. "Joint routing and aborting optimization of cooperative unmanned aerial vehicles," Reliability Engineering and System Safety, Elsevier, vol. 177(C), pages 131-137.
    20. Zhao, Xian & Li, Rong & Cao, Shuai & Qiu, Qingan, 2023. "Joint modeling of loading and mission abort policies for systems operating in dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    21. Chang, Mei-Shiang & Tseng, Ya-Ling & Chen, Jing-Wen, 2007. "A scenario planning approach for the flood emergency logistics preparation problem under uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 43(6), pages 737-754, November.
    22. Zhao, Xian & Fan, Yu & Qiu, Qingan & Chen, Ke, 2021. "Multi-criteria mission abort policy for systems subject to two-stage degradation process," European Journal of Operational Research, Elsevier, vol. 295(1), pages 233-245.
    23. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2018. "Co-optimization of state dependent loading and mission abort policy in heterogeneous warm standby systems," Reliability Engineering and System Safety, Elsevier, vol. 172(C), pages 151-158.
    24. Zhao, Xian & Dai, Ying & Qiu, Qingan & Wu, Yaguang, 2022. "Joint optimization of mission aborts and allocation of standby components considering mission loss," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    25. Ayamga, Matthew & Akaba, Selorm & Nyaaba, Albert Apotele, 2021. "Multifaceted applicability of drones: A review," Technological Forecasting and Social Change, Elsevier, vol. 167(C).
    26. Gregory Levitin & Liudong Xing & Yuanshun Dai, 2020. "Mission Abort Policy for Systems with Observable States of Standby Components," Risk Analysis, John Wiley & Sons, vol. 40(10), pages 1900-1912, October.
    27. Zhao, Xian & Lv, Zuheng & Qiu, Qingan & Wu, Yaguang, 2023. "Designing two-level rescue depot location and dynamic rescue policies for unmanned vehicles," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    28. Zhu, Xiaoning & Yan, Rui & Peng, Rui & Zhang, Zhongxin, 2020. "Optimal routing, loading and aborting of UAVs executing both visiting tasks and transportation tasks," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    29. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2020. "Optimal abort rules and subtask distribution in missions performed by multiple independent heterogeneous units," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    30. Zhao, Xian & Chai, Xiaofei & Sun, Jinglei & Qiu, Qingan, 2021. "Optimal bivariate mission abort policy for systems operate in random shock environment," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    31. Qiu, Qingan & Cui, Lirong, 2019. "Gamma process based optimal mission abort policy," Reliability Engineering and System Safety, Elsevier, vol. 190(C), pages 1-1.
    32. Ke Chen & Xian Zhao & Qingan Qiu, 2022. "Optimal Task Abort and Maintenance Policies Considering Time Redundancy," Mathematics, MDPI, vol. 10(9), pages 1-16, April.
    33. Wu, Congshan & Zhao, Xian & Qiu, Qingan & Sun, Jinglei, 2021. "Optimal mission abort policy for k-out-of-n: F balanced systems," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    34. Qiu, Qingan & Cui, Lirong & Wu, Bei, 2020. "Dynamic mission abort policy for systems operating in a controllable environment with self-healing mechanism," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    35. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    36. Meng, Shanshan & Guo, Xiuping & Li, Dong & Liu, Guoquan, 2023. "The multi-visit drone routing problem for pickup and delivery services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 169(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Optimal task aborting and sequencing in time constrained multi-task multi-attempt missions," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    2. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimal task sequencing and aborting in multi-attempt multi-task missions with a limited number of attempts," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    3. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "Multi-attempt missions with multiple rescue options," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    4. Meng, Sa & Xing, Liudong & Levitin, Gregory, 2024. "Optimizing component activation and operation aborting in missions with consecutive attempts and common abort command," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Meng, Sa & Xing, Liudong & Levitin, Gregory, 2024. "Activation delay and aborting policy minimizing expected losses in consecutive attempts having cumulative effect on mission success," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    6. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2024. "A new self-adaptive mission aborting policy for systems operating in uncertain random shock environment," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
    7. Zhao, Xian & Dai, Ying & Qiu, Qingan & Wu, Yaguang, 2022. "Joint optimization of mission aborts and allocation of standby components considering mission loss," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    8. Liu, Lujie & Yang, Jun & Yan, Bingxin, 2024. "A dynamic mission abort policy for transportation systems with stochastic dependence by deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    9. Zhao, Xian & Liu, Haoran & Wu, Yaguang & Qiu, Qingan, 2023. "Joint optimization of mission abort and system structure considering dynamic tasks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    10. Cheng, Guoqing & Shen, Jiayi & Wang, Fang & Li, Ling & Yang, Nan, 2024. "Optimal mission abort policy for a multi-component system with failure interaction," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    11. Yaguang Wu, 2023. "Optimal Stopping and Loading Rules Considering Multiple Attempts and Task Success Criteria," Mathematics, MDPI, vol. 11(4), pages 1-17, February.
    12. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Using kamikaze components in multi-attempt missions with abort option," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    13. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2023. "Optimal aborting policy for shock exposed missions with random rescue time," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    14. Ke Chen & Xian Zhao & Qingan Qiu, 2022. "Optimal Task Abort and Maintenance Policies Considering Time Redundancy," Mathematics, MDPI, vol. 10(9), pages 1-16, April.
    15. Levitin, Gregory & Xing, Liudong & Dai, Yuanshun, 2022. "Optimal mission aborting in multistate systems with storage," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    16. Liu, Bing & Huang, Hao & Deng, Qiao, 2022. "On optimal condition based task termination policy for phased task systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    17. Levitin, Gregory & Finkelstein, Maxim & Xiang, Yanping, 2021. "Optimal mission abort policies for repairable multistate systems performing multi-attempt mission," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    18. Liu, Lujie & Yang, Jun, 2023. "A dynamic mission abort policy for the swarm executing missions and its solution method by tailored deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    19. Cheng, Guoqing & Li, Ling & Shangguan, Chunxia & Yang, Nan & Jiang, Bo & Tao, Ningrong, 2023. "Optimal joint inspection and mission abort policy for a partially observable system," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    20. Zhao, Xian & Li, Rong & Cao, Shuai & Qiu, Qingan, 2023. "Joint modeling of loading and mission abort policies for systems operating in dynamic environments," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:244:y:2024:i:c:s0951832024000309. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.