IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v253y2025ics0951832024006057.html
   My bibliography  Save this article

An energy IoT-driven multi-dimension resilience methodology of smart microgrids

Author

Listed:
  • Dui, Hongyan
  • Li, Heyuan
  • Dong, Xinghui
  • Wu, Shaomin

Abstract

Smart microgrids are significant in promoting clean energy development and improving microgrid security and reliability. However, harsh environments make them exposed to various hazards, including natural hazards such as hail and wildfire and digital hazards such as cyberattacks. Due to these complex challenges, performing performance evaluation and resilience analysis for smart microgrids in different periods (e.g., before, during, and after the hazards) and different layers (e.g., a data layer and a physical layer) is difficult. To reduce this research gap, this paper develops a new multi-layer failure and multi-dimension resilience methodology in the energy Internet of Things (IoT). This paper analyses a multi-layer failure mechanism of smart microgrids in energy IoT with the synergy of the “physical layer, perception layer, communication layer, and application layer†, establishes a multi-stage performance model for smart microgrids based on operation loops, and develops a multi-dimension resilience methodology for smart microgrids with consideration of four performance evolution processes (i.e., prevention, degradation, restoration, and reconstitution). A case adopted from the Shandong province in China is used to demonstrate the proposed method under normal operating conditions and different types of disasters.

Suggested Citation

  • Dui, Hongyan & Li, Heyuan & Dong, Xinghui & Wu, Shaomin, 2025. "An energy IoT-driven multi-dimension resilience methodology of smart microgrids," Reliability Engineering and System Safety, Elsevier, vol. 253(C).
  • Handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006057
    DOI: 10.1016/j.ress.2024.110533
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024006057
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110533?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:253:y:2025:i:c:s0951832024006057. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.