IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v230y2023ics0951832022005932.html
   My bibliography  Save this article

Battery health prognosis with gated recurrent unit neural networks and hidden Markov model considering uncertainty quantification

Author

Listed:
  • Lin, Mingqiang
  • You, Yuqiang
  • Wang, Wei
  • Wu, Ji

Abstract

With the widespread use of lithium-ion batteries in various fields, battery failures become the most critical concerns that may lead to enormous economic losses and even serious safety issues. The prognostics and health management of lithium-ion batteries helps to ensure reliable and safe battery operations. Existing studies on the state of health of batteries mainly focus on improving and refining prediction models, while the emerging technologies that address uncertainty issues in the battery degradation process are also receiving more and more attention. In this paper, we propose a new state of health prediction method by using the gated recurrent unit neural networks and the hidden Markov model with considering uncertainty quantification. According to the empirical mode decomposition, the battery capacity is decomposed into the global downward trend and the local fluctuations. We train gated recurrent unit neural networks to fit the long-term global downward trend without gradient vanishing, and a hidden Markov model to fit the local fluctuations for quantifying the uncertainty introduced by the capacity recovery phenomenon in battery degradation. Finally, numerical experiments are conducted on two famous datasets, the experimental results demonstrate that the proposed method outperforms on the accuracy and reliability for battery state of health prediction.

Suggested Citation

  • Lin, Mingqiang & You, Yuqiang & Wang, Wei & Wu, Ji, 2023. "Battery health prognosis with gated recurrent unit neural networks and hidden Markov model considering uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005932
    DOI: 10.1016/j.ress.2022.108978
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022005932
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108978?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chen, Xiaowu & Liu, Zhen, 2022. "A long short-term memory neural network based Wiener process model for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Chen, Zhen & Li, Yaping & Xia, Tangbin & Pan, Ershun, 2019. "Hidden Markov model with auto-correlated observations for remaining useful life prediction and optimal maintenance policy," Reliability Engineering and System Safety, Elsevier, vol. 184(C), pages 123-136.
    3. Li, Sai & Fang, Huajing & Shi, Bing, 2021. "Remaining useful life estimation of Lithium-ion battery based on interacting multiple model particle filter and support vector regression," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    4. Li, J. & Adewuyi, K. & Lotfi, N. & Landers, R.G. & Park, J., 2018. "A single particle model with chemical/mechanical degradation physics for lithium ion battery State of Health (SOH) estimation," Applied Energy, Elsevier, vol. 212(C), pages 1178-1190.
    5. Nagulapati, Vijay Mohan & Lee, Hyunjun & Jung, DaWoon & Brigljevic, Boris & Choi, Yunseok & Lim, Hankwon, 2021. "Capacity estimation of batteries: Influence of training dataset size and diversity on data driven prognostic models," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Zhang, Sen-Ju & Kang, Rui & Lin, Yan-Hui, 2021. "Remaining useful life prediction for degradation with recovery phenomenon based on uncertain process," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    7. Lin, Chun Pang & Ling, Man Ho & Cabrera, Javier & Yang, Fangfang & Yu, Denis Yau Wai & Tsui, Kwok Leung, 2021. "Prognostics for lithium-ion batteries using a two-phase gamma degradation process model," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    8. Zheng, Xiujuan & Fang, Huajing, 2015. "An integrated unscented kalman filter and relevance vector regression approach for lithium-ion battery remaining useful life and short-term capacity prediction," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 74-82.
    9. Yu, Jianbo, 2018. "State of health prediction of lithium-ion batteries: Multiscale logic regression and Gaussian process regression ensemble," Reliability Engineering and System Safety, Elsevier, vol. 174(C), pages 82-95.
    10. Zhang, Jiusi & Jiang, Yuchen & Li, Xiang & Huo, Mingyi & Luo, Hao & Yin, Shen, 2022. "An adaptive remaining useful life prediction approach for single battery with unlabeled small sample data and parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    11. Zhang, Ying & Li, Yan-Fu, 2022. "Prognostics and health management of Lithium-ion battery using deep learning methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Shen, Sheng & Sadoughi, Mohammadkazem & Li, Meng & Wang, Zhengdao & Hu, Chao, 2020. "Deep convolutional neural networks with ensemble learning and transfer learning for capacity estimation of lithium-ion batteries," Applied Energy, Elsevier, vol. 260(C).
    13. Shi, Zunya & Chehade, Abdallah, 2021. "A dual-LSTM framework combining change point detection and remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    14. Dai, Le & Guo, Junyu & Wan, Jia-Lun & Wang, Jiang & Zan, Xueping, 2022. "A reliability evaluation model of rolling bearings based on WKN-BiGRU and Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    15. Wang, Yujie & Li, Mince & Chen, Zonghai, 2020. "Experimental study of fractional-order models for lithium-ion battery and ultra-capacitor: Modeling, system identification, and validation," Applied Energy, Elsevier, vol. 278(C).
    16. Lin, Mingqiang & Yan, Chenhao & Meng, Jinhao & Wang, Wei & Wu, Ji, 2022. "Lithium-ion batteries health prognosis via differential thermal capacity with simulated annealing and support vector regression," Energy, Elsevier, vol. 250(C).
    17. Xu, Xiaodong & Tang, Shengjin & Yu, Chuanqiang & Xie, Jian & Han, Xuebing & Ouyang, Minggao, 2021. "Remaining Useful Life Prediction of Lithium-ion Batteries Based on Wiener Process Under Time-Varying Temperature Condition," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    18. Xu, Fan & Yang, Fangfang & Fei, Zicheng & Huang, Zhelin & Tsui, Kwok-Leung, 2021. "Life prediction of lithium-ion batteries based on stacked denoising autoencoders," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zihan & Daeipour, Mohamad & Xu, Hongyi, 2023. "Quantification and propagation of Aleatoric uncertainties in topological structures," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    2. Mizutani, Daijiro & Nakazato, Yuto & Ikushima, Rie & Satsukawa, Koki & Kawasaki, Yosuke & Kuwahara, Masao, 2024. "Optimal intervention policy of emergency storage batteries for expressway transportation systems considering deterioration risk during lead time of replacement," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    3. Pan, Rui & Liu, Tongshen & Huang, Wei & Wang, Yuxin & Yang, Duo & Chen, Jie, 2023. "State of health estimation for lithium-ion batteries based on two-stage features extraction and gradient boosting decision tree," Energy, Elsevier, vol. 285(C).
    4. Che, Yunhong & Zheng, Yusheng & Forest, Florent Evariste & Sui, Xin & Hu, Xiaosong & Teodorescu, Remus, 2024. "Predictive health assessment for lithium-ion batteries with probabilistic degradation prediction and accelerating aging detection," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    5. Wang, Siwei & Xiao, Xinping & Ding, Qi, 2024. "A novel fractional system grey prediction model with dynamic delay effect for evaluating the state of health of lithium battery," Energy, Elsevier, vol. 290(C).
    6. Ye, Jinhua & Xie, Quan & Lin, Mingqiang & Wu, Ji, 2024. "A method for estimating the state of health of lithium-ion batteries based on physics-informed neural network," Energy, Elsevier, vol. 294(C).
    7. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Xiao, Renxin & Shen, Jiangwei & Liu, Yu & Liu, Yonggang, 2024. "Online surface temperature prediction and abnormal diagnosis of lithium-ion batteries based on hybrid neural network and fault threshold optimization," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    8. Li, Fang & Min, Yongjun & Zhang, Ying & Zhang, Yong & Zuo, Hongfu & Bai, Fang, 2024. "State-of-health estimation method for fast-charging lithium-ion batteries based on stacking ensemble sparse Gaussian process regression," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    9. Gámiz, M.L. & Navas-Gómez, F. & Raya-Miranda, R. & Segovia-García, M.C., 2023. "Dynamic reliability and sensitivity analysis based on HMM models with Markovian signal process," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    10. Zhou, Danhua & Wang, Bin & Zhu, Chao & Zhou, Fang & Wu, Hong, 2023. "A light-weight feature extractor for lithium-ion battery health prognosis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    11. Xue, Jingsong & Ma, Wentao & Feng, Xiaoyang & Guo, Peng & Guo, Yaosong & Hu, Xianzhi & Chen, Badong, 2023. "Stacking integrated learning model via ELM and GRU with mixture correntropy loss for robust state of health estimation of lithium-ion batteries," Energy, Elsevier, vol. 284(C).
    12. Liu, Xinghua & Li, Siqi & Tian, Jiaqiang & Wei, Zhongbao & Wang, Peng, 2023. "Health estimation of lithium-ion batteries with voltage reconstruction and fusion model," Energy, Elsevier, vol. 282(C).
    13. Wang, Shunli & Wu, Fan & Takyi-Aninakwa, Paul & Fernandez, Carlos & Stroe, Daniel-Ioan & Huang, Qi, 2023. "Improved singular filtering-Gaussian process regression-long short-term memory model for whole-life-cycle remaining capacity estimation of lithium-ion batteries adaptive to fast aging and multi-curren," Energy, Elsevier, vol. 284(C).
    14. Guo, Yongfang & Yu, Xiangyuan & Wang, Yashuang & Huang, Kai, 2024. "Health prognostics of lithium-ion batteries based on universal voltage range features mining and adaptive multi-Gaussian process regression with Harris Hawks optimization algorithm," Reliability Engineering and System Safety, Elsevier, vol. 244(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Mengda & Zhang, Tao & Liu, Yajie & Zhang, Yajun & Wang, Yu & Li, Kaiwen, 2022. "An ensemble learning prognostic method for capacity estimation of lithium-ion batteries based on the V-IOWGA operator," Energy, Elsevier, vol. 257(C).
    2. Wei, Yupeng & Wu, Dazhong, 2023. "Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Wang, Fujin & Zhao, Zhibin & Zhai, Zhi & Guo, Yanjie & Xi, Huan & Wang, Shibin & Chen, Xuefeng, 2023. "Feature disentanglement and tendency retainment with domain adaptation for Lithium-ion battery capacity estimation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Ma, Yan & Shan, Ce & Gao, Jinwu & Chen, Hong, 2023. "Multiple health indicators fusion-based health prognostic for lithium-ion battery using transfer learning and hybrid deep learning method," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Tang, Ting & Yuan, Huimei, 2022. "A hybrid approach based on decomposition algorithm and neural network for remaining useful life prediction of lithium-ion battery," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    6. Lyu, Guangzheng & Zhang, Heng & Miao, Qiang, 2023. "Parallel State Fusion LSTM-based Early-cycle Stage Lithium-ion Battery RUL Prediction Under Lebesgue Sampling Framework," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    7. Zhao, Hongqian & Chen, Zheng & Shu, Xing & Shen, Jiangwei & Lei, Zhenzhen & Zhang, Yuanjian, 2023. "State of health estimation for lithium-ion batteries based on hybrid attention and deep learning," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    8. Nagulapati, Vijay Mohan & Lee, Hyunjun & Jung, DaWoon & Brigljevic, Boris & Choi, Yunseok & Lim, Hankwon, 2021. "Capacity estimation of batteries: Influence of training dataset size and diversity on data driven prognostic models," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    9. Ardeshiri, Reza Rouhi & Liu, Ming & Ma, Chengbin, 2022. "Multivariate stacked bidirectional long short term memory for lithium-ion battery health management," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    10. Zhang, Jiusi & Jiang, Yuchen & Li, Xiang & Huo, Mingyi & Luo, Hao & Yin, Shen, 2022. "An adaptive remaining useful life prediction approach for single battery with unlabeled small sample data and parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    11. Meng, Huixing & Geng, Mengyao & Xing, Jinduo & Zio, Enrico, 2022. "A hybrid method for prognostics of lithium-ion batteries capacity considering regeneration phenomena," Energy, Elsevier, vol. 261(PB).
    12. Bai, Guangxing & Su, Yunsheng & Rahman, Maliha Maisha & Wang, Zequn, 2023. "Prognostics of Lithium-Ion batteries using knowledge-constrained machine learning and Kalman filtering," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    13. Shu, Xing & Shen, Jiangwei & Chen, Zheng & Zhang, Yuanjian & Liu, Yonggang & Lin, Yan, 2022. "Remaining capacity estimation for lithium-ion batteries via co-operation of multi-machine learning algorithms," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    14. Cai, Xiao & Li, Naipeng & Xie, Min, 2024. "RUL prediction for two-phase degrading systems considering physical damage observations," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    15. Zhang, Shuyi & Zhai, Qingqing & Li, Yaqiu, 2023. "Degradation modeling and RUL prediction with Wiener process considering measurable and unobservable external impacts," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    16. He, Jiabei & Tian, Yi & Wu, Lifeng, 2022. "A hybrid data-driven method for rapid prediction of lithium-ion battery capacity," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    17. Xu, Xiaodong & Tang, Shengjin & Yu, Chuanqiang & Xie, Jian & Han, Xuebing & Ouyang, Minggao, 2021. "Remaining Useful Life Prediction of Lithium-ion Batteries Based on Wiener Process Under Time-Varying Temperature Condition," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    18. Chen, Xiaowu & Liu, Zhen, 2022. "A long short-term memory neural network based Wiener process model for remaining useful life prediction," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    19. Liu, Xingheng & Matias, José & Jäschke, Johannes & Vatn, Jørn, 2022. "Gibbs sampler for noisy Transformed Gamma process: Inference and remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    20. Tian, Yong & Dong, Qianyuan & Tian, Jindong & Li, Xiaoyu & Li, Guang & Mehran, Kamyar, 2023. "Capacity estimation of lithium-ion batteries based on optimized charging voltage section and virtual sample generation," Applied Energy, Elsevier, vol. 332(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005932. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.