IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v251y2024ics0951832024003235.html
   My bibliography  Save this article

Modeling deterioration and predicting remaining useful life using stochastic differential equations

Author

Listed:
  • Iannacone, Leandro
  • Gardoni, Paolo

Abstract

The deterioration of engineering systems might reduce the system reliability and prompt maintenance operations that may disrupt the ability of the systems to provide regular service. Estimating the Remaining Useful Life (RUL) of the system requires an understanding of the deterioration processes acting on it. Recent formulations have shifted the focus of deterioration modeling from the system as a whole to the individual, time-varying state-variables that define the characteristics of the system. These state-dependent formulations depend on the selected models for the evolution of the state-variables over time. However, most available models rely on simplifying assumptions that disregard the true nature of the processes, either by discretizing the time domain or by assuming independence among the several processes acting on the system. This paper proposes using a system of Stochastic Differential Equations (SDEs) to model the state variables' evolution. The proposed formulation captures the continuous nature of the processes and accounts for the possible interactions among them. In addition, results from stochastic calculus can be used to facilitate the simulation of the processes and to obtain closed-form solutions for the distribution of the state variables over time and the RUL of the system. Moreover, the proposed SDEs can be calibrated based on observations of the state variables, should those be obtained via testing/monitoring or simulations. A procedure for calibration is introduced, and several numerical examples are investigated to highlight the different scenarios encountered in practice. Finally, the proposed SDE formulation is used to predict the RUL of lithium-ion batteries using actual Structural Health Monitoring data.

Suggested Citation

  • Iannacone, Leandro & Gardoni, Paolo, 2024. "Modeling deterioration and predicting remaining useful life using stochastic differential equations," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
  • Handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024003235
    DOI: 10.1016/j.ress.2024.110251
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832024003235
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2024.110251?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hu, Changhua & Xing, Yuanxing & Du, Dangbo & Si, Xiaosheng & Zhang, Jianxun, 2023. "Remaining useful life estimation for two-phase nonlinear degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    2. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    3. Dai, Xinliang & Qu, Sheng & Sui, Hao & Wu, Pingbo, 2022. "Reliability modelling of wheel wear deterioration using conditional bivariate gamma processes and Bayesian hierarchical models," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    4. A. Golightly & D. J. Wilkinson, 2005. "Bayesian Inference for Stochastic Kinetic Models Using a Diffusion Approximation," Biometrics, The International Biometric Society, vol. 61(3), pages 781-788, September.
    5. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    6. Liao, Guobo & Yin, Hongpeng & Chen, Min & Lin, Zheng, 2021. "Remaining useful life prediction for multi-phase deteriorating process based on Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    7. Pang, Zhenan & Li, Tianmei & Pei, Hong & Si, Xiaosheng, 2023. "A condition-based prognostic approach for age- and state-dependent partially observable nonlinear degrading system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Iannacone, Leandro & Sharma, Neetesh & Tabandeh, Armin & Gardoni, Paolo, 2022. "Modeling Time-varying Reliability and Resilience of Deteriorating Infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    9. Xu, Gaowei & Azhari, Fae, 2022. "Data-driven optimization of repair schemes and inspection intervals for highway bridges," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    10. Barker, C.T. & Newby, M.J., 2009. "Optimal non-periodic inspection for a multivariate degradation model," Reliability Engineering and System Safety, Elsevier, vol. 94(1), pages 33-43.
    11. Kang, Won-Hee & Song, Junho & Gardoni, Paolo, 2008. "Matrix-based system reliability method and applications to bridge networks," Reliability Engineering and System Safety, Elsevier, vol. 93(11), pages 1584-1593.
    12. Wei, Yupeng & Wu, Dazhong, 2023. "Prediction of state of health and remaining useful life of lithium-ion battery using graph convolutional network with dual attention mechanisms," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    13. Shamstabar, Yousof & Shahriari, Hamid & Samimi, Yaser, 2021. "Reliability monitoring of systems with cumulative shock-based deterioration process," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    14. Wang, Cao & Zhang, Hao & Li, Quanwang, 2017. "Reliability assessment of aging structures subjected to gradual and shock deteriorations," Reliability Engineering and System Safety, Elsevier, vol. 161(C), pages 78-86.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jian-Xun & Zhang, Jia-Ling & Zhang, Zheng-Xin & Li, Tian-Mei & Si, Xiao-Sheng, 2024. "Remaining useful life prediction for stochastic degrading devices incorporating quantization," Reliability Engineering and System Safety, Elsevier, vol. 250(C).
    2. Cai, Xiao & Li, Naipeng & Xie, Min, 2024. "RUL prediction for two-phase degrading systems considering physical damage observations," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    3. Zhang, Ao & Wang, Zhihua & Bao, Rui & Liu, Chengrui & Wu, Qiong & Cao, Shihao, 2023. "A novel failure time estimation method for degradation analysis based on general nonlinear Wiener processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Jahani, Salman & Zhou, Shiyu & Veeramani, Dharmaraj, 2021. "Stochastic prognostics under multiple time-varying environmental factors," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.
    6. Yu, Juanya & Sharma, Neetesh & Gardoni, Paolo, 2024. "Functional connectivity analysis for modeling flow in infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    7. Pang, Zhenan & Li, Tianmei & Pei, Hong & Si, Xiaosheng, 2023. "A condition-based prognostic approach for age- and state-dependent partially observable nonlinear degrading system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    8. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    9. Xiaodong Xu & Chuanqiang Yu & Shengjin Tang & Xiaoyan Sun & Xiaosheng Si & Lifeng Wu, 2019. "Remaining Useful Life Prediction of Lithium-Ion Batteries Based on Wiener Processes with Considering the Relaxation Effect," Energies, MDPI, vol. 12(9), pages 1-17, May.
    10. Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    11. Ma, Jie & Cai, Li & Liao, Guobo & Yin, Hongpeng & Si, Xiaosheng & Zhang, Peng, 2023. "A multi-phase Wiener process-based degradation model with imperfect maintenance activities," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    12. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    13. Guo, Chiming & Wang, Wenbin & Guo, Bo & Si, Xiaosheng, 2013. "A maintenance optimization model for mission-oriented systems based on Wiener degradation," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 183-194.
    14. Wang, Liying & Song, Yushuang & Zhang, Wenhua & Ling, Xiaoliang, 2023. "Condition-based inspection, component reallocation and replacement optimization of two-component interchangeable series system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    15. Lin, Wenyi & Chai, Yi & Fan, Linchuan & Zhang, Ke, 2024. "Remaining useful life prediction using nonlinear multi-phase Wiener process and variational Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    16. Yu, Wennian & Shao, Yimin & Xu, Jin & Mechefske, Chris, 2022. "An adaptive and generalized Wiener process model with a recursive filtering algorithm for remaining useful life estimation," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    17. Nocera, Fabrizio & Contento, Alessandro & Gardoni, Paolo, 2024. "Risk analysis of supply chains: The role of supporting structures and infrastructure," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    18. Wang, Xiaolin & Balakrishnan, Narayanaswamy & Guo, Bo, 2014. "Residual life estimation based on a generalized Wiener degradation process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 13-23.
    19. Barui, Sandip & Mitra, Debanjan & Balakrishnan, Narayanaswamy, 2024. "Flexible modelling of a bivariate degradation process with a shared frailty and an application to fatigue crack data," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    20. Hu, Changhua & Xing, Yuanxing & Du, Dangbo & Si, Xiaosheng & Zhang, Jianxun, 2023. "Remaining useful life estimation for two-phase nonlinear degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:251:y:2024:i:c:s0951832024003235. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.