IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v196y2020ics0951832019306404.html
   My bibliography  Save this article

Predictive maintenance of systems subject to hard failure based on proportional hazards model

Author

Listed:
  • Hu, Jiawen
  • Chen, Piao

Abstract

The remaining useful lifetime (RUL) estimated from the in-situ degradation data has shown to be useful for online predictive maintenance. In the literature, the RUL is often estimated by assuming a soft-failure threshold for the degradation data. In practice, however, systems may not be subject to the degradation-induced soft failures. Instead, the systems are deemed to be fail when they cannot perform the intended function, and such failures are known as hard failures. Because there are no fixed thresholds for hard failures, the corresponding RUL estimation is not an easy task, which causes difficulties in finding the optimal maintenance schedule. In this study, a Weibull proportional hazards model is proposed to jointly model the degradation data and the failure time data. The degradation data are treated as the time-varying covariates so that the degradation does not directly lead to system failures, but increases the hazard rate of hard failures. A random-effects Wiener process is proposed to model the degradation data by considering the system heterogeneities. Based on the developed proportional hazards model, closed-form distribution of the RUL is derived upon each inspection and the optimal maintenance schedule is then obtained by minimizing the system maintenance cost. The proposed maintenance strategy is successfully applied to predictive maintenance of lead-acid batteries.

Suggested Citation

  • Hu, Jiawen & Chen, Piao, 2020. "Predictive maintenance of systems subject to hard failure based on proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
  • Handle: RePEc:eee:reensy:v:196:y:2020:i:c:s0951832019306404
    DOI: 10.1016/j.ress.2019.106707
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019306404
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106707?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Xiao, 2010. "Wiener processes with random effects for degradation data," Journal of Multivariate Analysis, Elsevier, vol. 101(2), pages 340-351, February.
    2. Ahmad Almuhtady & Seungchul Lee & Edwin Romeijn & Michael Wynblatt & Jun Ni, 2014. "A Degradation-Informed Battery-Swapping Policy for Fleets of Electric or Hybrid-Electric Vehicles," Transportation Science, INFORMS, vol. 48(4), pages 609-618, November.
    3. Liu, Bin & Liang, Zhenglin & Parlikad, Ajith Kumar & Xie, Min & Kuo, Way, 2017. "Condition-based maintenance for systems with aging and cumulative damage based on proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 200-209.
    4. Olde Keizer, Minou C.A. & Flapper, Simme Douwe P. & Teunter, Ruud H., 2017. "Condition-based maintenance policies for systems with multiple dependent components: A review," European Journal of Operational Research, Elsevier, vol. 261(2), pages 405-420.
    5. Xiujie Zhao & Olivier Gaudoin & Laurent Doyen & Min Xie, 2019. "Optimal inspection and replacement policy based on experimental degradation data with covariates," IISE Transactions, Taylor & Francis Journals, vol. 51(3), pages 322-336, March.
    6. Zhi‐Sheng Ye & Min Xie, 2015. "Rejoinder to ‘Stochastic modelling and analysis of degradation for highly reliable products’," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(1), pages 35-36, January.
    7. Peng, Weiwen & Li, Yan-Feng & Yang, Yuan-Jian & Huang, Hong-Zhong & Zuo, Ming J., 2014. "Inverse Gaussian process models for degradation analysis: A Bayesian perspective," Reliability Engineering and System Safety, Elsevier, vol. 130(C), pages 175-189.
    8. Qiang Zhou & Junbo Son & Shiyu Zhou & Xiaofeng Mao & Mutasim Salman, 2014. "Remaining useful life prediction of individual units subject to hard failure," IISE Transactions, Taylor & Francis Journals, vol. 46(10), pages 1017-1030, October.
    9. Savaş Dayanik & Ülkü Gürler, 2002. "An Adaptive Bayesian Replacement Policy with Minimal Repair," Operations Research, INFORMS, vol. 50(3), pages 552-558, June.
    10. Zhi‐Sheng Ye & Min Xie, 2015. "Stochastic modelling and analysis of degradation for highly reliable products," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 31(1), pages 16-32, January.
    11. Xiao Liu & Jingrui Li & Khalifa Al-Khalifa & Abdelmagid Hamouda & David Coit & Elsayed Elsayed, 2013. "Condition-based maintenance for continuously monitored degrading systems with multiple failure modes," IISE Transactions, Taylor & Francis Journals, vol. 45(4), pages 422-435.
    12. Ye, Zhi-Sheng & Chen, Nan & Shen, Yan, 2015. "A new class of Wiener process models for degradation analysis," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 58-67.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xudan Chen & Guoxun Ji & Xinli Sun & Zhen Li, 2019. "Inverse Gaussian–based model with measurement errors for degradation analysis," Journal of Risk and Reliability, , vol. 233(6), pages 1086-1098, December.
    2. Hao, Songhua & Yang, Jun & Berenguer, Christophe, 2019. "Degradation analysis based on an extended inverse Gaussian process model with skew-normal random effects and measurement errors," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 261-270.
    3. Pang, Zhenan & Si, Xiaosheng & Hu, Changhua & Du, Dangbo & Pei, Hong, 2021. "A Bayesian Inference for Remaining Useful Life Estimation by Fusing Accelerated Degradation Data and Condition Monitoring Data," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
    4. Hu, Jiawen & Shen, Jingyuan & Shen, Lijuan, 2020. "Opportunistic maintenance for two-component series systems subject to dependent degradation and shock," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    5. Zhengxin Zhang & Xiaosheng Si & Changhua Hu & Xiangyu Kong, 2015. "Degradation modeling–based remaining useful life estimation: A review on approaches for systems with heterogeneity," Journal of Risk and Reliability, , vol. 229(4), pages 343-355, August.
    6. Zhou, Shirong & Tang, Yincai & Xu, Ancha, 2021. "A generalized Wiener process with dependent degradation rate and volatility and time-varying mean-to-variance ratio," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    7. Xu, Jun & Liang, Zhenglin & Li, Yan-Fu & Wang, Kaibo, 2021. "Generalized condition-based maintenance optimization for multi-component systems considering stochastic dependency and imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    8. Liu, Bin & Zhao, Xiujie & Liu, Guoquan & Liu, Yiqi, 2020. "Life cycle cost analysis considering multiple dependent degradation processes and environmental influence," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    9. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    10. Weichao Yu & Xianbin Zheng & Weihe Huang & Qingwen Cai & Jie Guo & Jili Xu & Yang Liu & Jing Gong & Hong Yang, 2022. "A Data-Driven Methodology for the Reliability Analysis of the Natural Gas Compressor Unit Considering Multiple Failure Modes," Energies, MDPI, vol. 15(10), pages 1-18, May.
    11. Wang, Jun & Zhu, Xiaoyan, 2021. "Joint optimization of condition-based maintenance and inventory control for a k-out-of-n:F system of multi-state degrading components," European Journal of Operational Research, Elsevier, vol. 290(2), pages 514-529.
    12. Liu, Di & Wang, Shaoping & Zhang, Chao & Tomovic, Mileta, 2018. "Bayesian model averaging based reliability analysis method for monotonic degradation dataset based on inverse Gaussian process and Gamma process," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 25-38.
    13. Song, Kai & Shi, Jian & Yi, Xiaojian, 2020. "A time-discrete and zero-adjusted gamma process model with application to degradation analysis," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 560(C).
    14. Zhang, Jian-Xun & Si, Xiao-Sheng & Du, Dang-Bo & Hu, Chang-Hua & Hu, Chen, 2020. "A novel iterative approach of lifetime estimation for standby systems with deteriorating spare parts," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    15. Wang, Xiaofei & Wang, Bing Xing & Jiang, Pei Hua & Hong, Yili, 2020. "Accurate reliability inference based on Wiener process with random effects for degradation data," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    16. Wang, Huan & Wang, Guan-jun & Duan, Feng-jun, 2016. "Planning of step-stress accelerated degradation test based on the inverse Gaussian process," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 97-105.
    17. Sun, Bo & Fan, Xuejun & Ye, Huaiyu & Fan, Jiajie & Qian, Cheng & van Driel, Williem & Zhang, Guoqi, 2017. "A novel lifetime prediction for integrated LED lamps by electronic-thermal simulation," Reliability Engineering and System Safety, Elsevier, vol. 163(C), pages 14-21.
    18. Dai, Anshu & Wang, Xin & Li, Yu & Li, Ting & He, Shuguang, 2023. "Design of a performance-based warranty policy with replacement–repair strategy and cumulative cost threshold," International Journal of Production Economics, Elsevier, vol. 255(C).
    19. Zhao, Xiujie & Chen, Piao & Gaudoin, Olivier & Doyen, Laurent, 2021. "Accelerated degradation tests with inspection effects," European Journal of Operational Research, Elsevier, vol. 292(3), pages 1099-1114.
    20. Zeng, Zhiguo & Barros, Anne & Coit, David, 2023. "Dependent failure behavior modeling for risk and reliability: A systematic and critical literature review," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:196:y:2020:i:c:s0951832019306404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.