Deterministic sampling for propagating epistemic and aleatory uncertainty in dynamic event tree analysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2018.03.009
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Karanki, D.R. & Rahman, S. & Dang, V.N. & Zerkak, O., 2017. "Epistemic and aleatory uncertainties in integrated deterministic and probabilistic safety assessment: Tradeoff between accuracy and accident simulations," Reliability Engineering and System Safety, Elsevier, vol. 162(C), pages 91-102.
- Catalyurek, Umit & Rutt, Benjamin & Metzroth, Kyle & Hakobyan, Aram & Aldemir, Tunc & Denning, Richard & Dunagan, Sean & Kunsman, David, 2010. "Development of a code-agnostic computational infrastructure for the dynamic generation of accident progression event trees," Reliability Engineering and System Safety, Elsevier, vol. 95(3), pages 278-294.
- Karanki, D.R. & Dang, V.N. & MacMillan, M.T. & Podofillini, L., 2018. "A comparison of dynamic event tree methods – Case study on a chemical batch reactor," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 542-553.
- Eldred, M.S. & Swiler, L.P. & Tang, G., 2011. "Mixed aleatory-epistemic uncertainty quantification with stochastic expansions and optimization-based interval estimation," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1092-1113.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Zheng, Xiaoyu & Tamaki, Hitoshi & Sugiyama, Tomoyuki & Maruyama, Yu, 2022. "Dynamic probabilistic risk assessment of nuclear power plants using multi-fidelity simulations," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
- Park, Jong Woo & Lee, Seung Jun, 2022. "Simulation optimization framework for dynamic probabilistic safety assessment," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
- Qingwei Xu & Kaili Xu, 2020. "Statistical Analysis and Prediction of Fatal Accidents in the Metallurgical Industry in China," IJERPH, MDPI, vol. 17(11), pages 1-20, May.
- Morales-Torres, Adrián & Escuder-Bueno, Ignacio & Serrano-Lombillo, Armando & Castillo RodrÃguez, Jesica T., 2019. "Dealing with epistemic uncertainty in risk-informed decision making for dam safety management," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
- Xu, Gaowei & Azhari, Fae, 2022. "Data-driven optimization of repair schemes and inspection intervals for highway bridges," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
- Jinhua Mi & Yuhua Cheng & Yufei Song & Libing Bai & Kai Chen, 2022. "Application of dynamic evidential networks in reliability analysis of complex systems with epistemic uncertainty and multiple life distributions," Annals of Operations Research, Springer, vol. 311(1), pages 311-333, April.
- Huang, Jia & You, Jian-Xin & Liu, Hu-Chen & Song, Ming-Shun, 2020. "Failure mode and effect analysis improvement: A systematic literature review and future research agenda," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
- Zarghami, Seyed Ashkan & Dumrak, Jantanee, 2021. "Aleatory uncertainty quantification of project resources and its application to project scheduling," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zheng, Xiaoyu & Tamaki, Hitoshi & Sugiyama, Tomoyuki & Maruyama, Yu, 2022. "Dynamic probabilistic risk assessment of nuclear power plants using multi-fidelity simulations," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
- Yoo, Yeongmin & Jung, Ui-Jin & Han, Yong Ha & Lee, Jongsoo, 2021. "Data Augmentation-Based Prediction of System Level Performance under Model and Parameter Uncertainties: Role of Designable Generative Adversarial Networks (DGAN)," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
- Chemweno, Peter & Pintelon, Liliane & Muchiri, Peter Nganga & Van Horenbeek, Adriaan, 2018. "Risk assessment methodologies in maintenance decision making: A review of dependability modelling approaches," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 64-77.
- Karanki, D.R. & Dang, V.N. & MacMillan, M.T. & Podofillini, L., 2018. "A comparison of dynamic event tree methods – Case study on a chemical batch reactor," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 542-553.
- Xiao, Mi & Zhang, Jinhao & Gao, Liang, 2021. "A Kriging-assisted sampling method for reliability analysis of structures with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
- Picoco, Claudia & Rychkov, Valentin & Aldemir, Tunc, 2020. "A framework for verifying Dynamic Probabilistic Risk Assessment models," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
- Rocchetta, Roberto & Crespo, Luis G., 2021. "A scenario optimization approach to reliability-based and risk-based design: Soft-constrained modulation of failure probability bounds," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Guo, Zehua & Dailey, Ryan & Feng, Tangtao & Zhou, Yukun & Sun, Zhongning & Corradini, Michael L & Wang, Jun, 2021. "Uncertainty analysis of ATF Cr-coated-Zircaloy on BWR in-vessel accident progression during a station blackout," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
- Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Property values associated with the failure of individual links in a system with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
- Salomon, Julian & Winnewisser, Niklas & Wei, Pengfei & Broggi, Matteo & Beer, Michael, 2021. "Efficient reliability analysis of complex systems in consideration of imprecision," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Mi, Jinhua & Lu, Ning & Li, Yan-Feng & Huang, Hong-Zhong & Bai, Libing, 2022. "An evidential network-based hierarchical method for system reliability analysis with common cause failures and mixed uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
- ParÃs, C. & Queral, C. & Mula, J. & Gómez-Magán, J. & Sánchez-Perea, M. & Meléndez, E. & Gil, J., 2019. "Quantitative risk reduction by means of recovery strategies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 13-32.
- Xu, Yingchun & Yao, Wen & Zheng, Xiaohu & Chen, Xiaoqian, 2020. "An iterative information integration method for multi-level system reliability analysis based on Bayesian Melding Method," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
- Bellaera, R. & Bonifetto, R. & Di Maio, F. & Pedroni, N. & Savoldi, L. & Zanino, R. & Zio, E., 2020. "Integrated deterministic and probabilistic safety assessment of a superconducting magnet cryogenic cooling circuit for nuclear fusion applications," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
- Chen, Wen-Bin & Li, Xiao-Yang & Kang, Rui, 2022. "Integration for degradation analysis with multi-source ADT datasets considering dataset discrepancies and epistemic uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Lv, Y. & Yan, X.D. & Sun, W. & Gao, Z.Y., 2015. "A risk-based method for planning of bus–subway corridor evacuation under hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 139(C), pages 188-199.
- Pietro Turati & Nicola Pedroni & Enrico Zio, 2017. "An Adaptive Simulation Framework for the Exploration of Extreme and Unexpected Events in Dynamic Engineered Systems," Risk Analysis, John Wiley & Sons, vol. 37(1), pages 147-159, January.
- Shah, Harsheel & Hosder, Serhat & Winter, Tyler, 2015. "Quantification of margins and mixed uncertainties using evidence theory and stochastic expansions," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 59-72.
- Huang, Jia & You, Jian-Xin & Liu, Hu-Chen & Song, Ming-Shun, 2020. "Failure mode and effect analysis improvement: A systematic literature review and future research agenda," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
- Vincenzo Destino & Nicola Pedroni & Roberto Bonifetto & Francesco Di Maio & Laura Savoldi & Enrico Zio, 2021. "Metamodeling and On-Line Clustering for Loss-of-Flow Accident Precursors Identification in a Superconducting Magnet Cryogenic Cooling Circuit," Energies, MDPI, vol. 14(17), pages 1-37, September.
More about this item
Keywords
Epistemic and aleatory uncertainties; Dynamic PSA; Monte Carlo simulation; Dynamic event tree analysis; Station Blackout (SBO);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:175:y:2018:i:c:p:62-78. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.