IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v193y2020ics0951832019304387.html
   My bibliography  Save this article

A two-level Bayesian early fault detection for mechanical equipment subject to dependent failure modes

Author

Listed:
  • Duan, Chaoqun
  • Makis, Viliam
  • Deng, Chao

Abstract

A two-level Bayesian control approach is presented to detect early fault for mechanical equipment subject to dependent degradation and catastrophic failures. The system degradation process is modeled using a continuous time stochastic process with three states. To model the dependence of two failure modes, we assume that the joint distribution of the time to catastrophic failure and sojourn time in the healthy state follows Marshall-Olkin bivariate exponential distribution. To avoid unnecessary sampling cost and to effectively detect impending failure, a two-level control policy, where longer sampling interval is applied for healthier state and shorter sampling interval is used in severe degradation state is proposed in Bayesian control chart framework for a multivariate observation process considering dependent failure modes. The optimization problem is formulated and solved in the semi-Markov decision process (SMDP) framework. A formula for the mean residual life (MRL) is also derived using the Bayesian approach. The validation of the proposed methodologies is carried out using real multivariate degradation data obtained from a milling machine. A comparison with the multivariate Bayesian control chart with a single sampling interval and a single control limit is given, which illustrates the effectiveness of the proposed approach.

Suggested Citation

  • Duan, Chaoqun & Makis, Viliam & Deng, Chao, 2020. "A two-level Bayesian early fault detection for mechanical equipment subject to dependent failure modes," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:reensy:v:193:y:2020:i:c:s0951832019304387
    DOI: 10.1016/j.ress.2019.106676
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019304387
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106676?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Michael Jong Kim & Viliam Makis & Rui Jiang, 2013. "Parameter estimation for partially observable systems subject to random failure," Applied Stochastic Models in Business and Industry, John Wiley & Sons, vol. 29(3), pages 279-294, May.
    2. Naderkhani, Farnoosh & Makis, Viliam, 2016. "Economic design of multivariate Bayesian control chart with two sampling intervals," International Journal of Production Economics, Elsevier, vol. 174(C), pages 29-42.
    3. Michael E. Cholette & Dragan Djurdjanovic, 2014. "Degradation modeling and monitoring of machines using operation-specific hidden Markov models," IISE Transactions, Taylor & Francis Journals, vol. 46(10), pages 1107-1123, October.
    4. Rafiee, Koosha & Feng, Qianmei & Coit, David W., 2017. "Reliability assessment of competing risks with generalized mixed shock models," Reliability Engineering and System Safety, Elsevier, vol. 159(C), pages 1-11.
    5. Wang, Zhaoqiang & Hu, Changhua & Wang, Wenbin & Zhou, Zhijie & Si, Xiaosheng, 2014. "A case study of remaining storage life prediction using stochastic filtering with the influence of condition monitoring," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 186-195.
    6. Cui, Lirong & Li, Haijun, 2007. "Analytical method for reliability and MTTF assessment of coherent systems with dependent components," Reliability Engineering and System Safety, Elsevier, vol. 92(3), pages 300-307.
    7. Peng, Rui & Liu, Bin & Zhai, Qingqing & Wang, Wenbin, 2019. "Optimal maintenance strategy for systems with two failure modes," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 624-632.
    8. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    9. Wang, Wenbin & Zhao, Fei & Peng, Rui, 2014. "A preventive maintenance model with a two-level inspection policy based on a three-stage failure process," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 207-220.
    10. Richard Barlow & Larry Hunter, 1960. "Optimum Preventive Maintenance Policies," Operations Research, INFORMS, vol. 8(1), pages 90-100, February.
    11. Serge Provost & Edmund Rudiuk, 1996. "The exact distribution of indefinite quadratic forms in noncentral normal vectors," Annals of the Institute of Statistical Mathematics, Springer;The Institute of Statistical Mathematics, vol. 48(2), pages 381-394, June.
    12. Zhai, Qingqing & Chen, Piao & Hong, Lanqing & Shen, Lijuan, 2018. "A random-effects Wiener degradation model based on accelerated failure time," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 94-103.
    13. Michael Jong Kim & Viliam Makis, 2013. "Joint Optimization of Sampling and Control of Partially Observable Failing Systems," Operations Research, INFORMS, vol. 61(3), pages 777-790, June.
    14. Rebello, Sinda & Yu, Hongyang & Ma, Lin, 2018. "An integrated approach for system functional reliability assessment using Dynamic Bayesian Network and Hidden Markov Model," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 124-135.
    15. Moghaddass, Ramin & Zuo, Ming J., 2014. "An integrated framework for online diagnostic and prognostic health monitoring using a multistate deterioration process," Reliability Engineering and System Safety, Elsevier, vol. 124(C), pages 92-104.
    16. Kim, Michael Jong & Jiang, Rui & Makis, Viliam & Lee, Chi-Guhn, 2011. "Optimal Bayesian fault prediction scheme for a partially observable system subject to random failure," European Journal of Operational Research, Elsevier, vol. 214(2), pages 331-339, October.
    17. Akram Khaleghei & Viliam Makis, 2016. "Reliability estimation of a system subject to condition monitoring with two dependent failure modes," IISE Transactions, Taylor & Francis Journals, vol. 48(11), pages 1058-1071, November.
    18. Shafiee, Mahmood & Finkelstein, Maxim, 2015. "An optimal age-based group maintenance policy for multi-unit degrading systems," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 230-238.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Su, Yunsheng & Shi, Luojie & Zhou, Kai & Bai, Guangxing & Wang, Zequn, 2024. "Knowledge-informed deep networks for robust fault diagnosis of rolling bearings," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Wang, Jingjing & Miao, Yonghao, 2021. "Optimal preventive maintenance policy of the balanced system under the semi-Markov model," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
    3. Kampitsis, Dimitris & Panagiotidou, Sofia, 2022. "A Bayesian condition-based maintenance and monitoring policy with variable sampling intervals," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    4. He, Yihai & Zhao, Yixiao & Han, Xiao & Zhou, Di & Wang, Wenzhuo, 2020. "Functional risk-oriented health prognosis approach for intelligent manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    5. Azar, Kamyar & Hajiakhondi-Meybodi, Zohreh & Naderkhani, Farnoosh, 2022. "Semi-supervised clustering-based method for fault diagnosis and prognosis: A case study," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Ma, Chenyang & Li, Yongbo & Wang, Xianzhi & Cai, Zhiqiang, 2023. "Early fault diagnosis of rotating machinery based on composite zoom permutation entropy," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    7. Xu, Gaowei & Azhari, Fae, 2022. "Data-driven optimization of repair schemes and inspection intervals for highway bridges," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    8. Li, Wanhong & Liu, Guangzhong, 2022. "Dynamic failure mode analysis approach based on an improved Taguchi process capability index," Reliability Engineering and System Safety, Elsevier, vol. 218(PB).
    9. Zio, Enrico, 2022. "Prognostics and Health Management (PHM): Where are we and where do we (need to) go in theory and practice," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    10. Wu, Jingyao & Zhao, Zhibin & Sun, Chuang & Yan, Ruqiang & Chen, Xuefeng, 2021. "Learning from Class-imbalanced Data with a Model-Agnostic Framework for Machine Intelligent Diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Akram Khaleghei & Viliam Makis, 2015. "Model parameter estimation and residual life prediction for a partially observable failing system," Naval Research Logistics (NRL), John Wiley & Sons, vol. 62(3), pages 190-205, April.
    2. Duan, Chaoqun & Li, Yifan & Pu, Huayan & Luo, Jun, 2022. "Adaptive monitoring scheme of stochastically failing systems under hidden degradation processes," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    3. Kampitsis, Dimitris & Panagiotidou, Sofia, 2022. "A Bayesian condition-based maintenance and monitoring policy with variable sampling intervals," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    4. Hu, Yang & Baraldi, Piero & Di Maio, Francesco & Zio, Enrico, 2015. "A particle filtering and kernel smoothing-based approach for new design component prognostics," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 19-31.
    5. Zhang, Fengxia & Shen, Jingyuan & Liao, Haitao & Ma, Yizhong, 2021. "Optimal preventive maintenance policy for a system subject to two-phase imperfect inspections," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    6. Zhang, Jian-Xun & Hu, Chang-Hua & He, Xiao & Si, Xiao-Sheng & Liu, Yang & Zhou, Dong-Hua, 2017. "Lifetime prognostics for deteriorating systems with time-varying random jumps," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 338-350.
    7. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    8. Briš, Radim & Byczanski, Petr & Goňo, Radomír & Rusek, Stanislav, 2017. "Discrete maintenance optimization of complex multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 80-89.
    9. de Jonge, Bram & Teunter, Ruud & Tinga, Tiedo, 2017. "The influence of practical factors on the benefits of condition-based maintenance over time-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 21-30.
    10. Xiao, Xiao & Jiang, Wei & Luo, Jianwen, 2019. "Combining process and product information for quality improvement," International Journal of Production Economics, Elsevier, vol. 207(C), pages 130-143.
    11. Badía, F.G. & Berrade, M.D. & Cha, Ji Hwan & Lee, Hyunju, 2018. "Optimal replacement policy under a general failure and repair model: Minimal versus worse than old repair," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 362-372.
    12. Lam, Ji Ye Janet & Banjevic, Dragan, 2015. "A myopic policy for optimal inspection scheduling for condition based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 144(C), pages 1-11.
    13. Michiel A. J. uit het Broek & Ruud H. Teunter & Bram de Jonge & Jasper Veldman & Nicky D. Van Foreest, 2020. "Condition-Based Production Planning: Adjusting Production Rates to Balance Output and Failure Risk," Manufacturing & Service Operations Management, INFORMS, vol. 22(4), pages 792-811, July.
    14. Badía, F.G. & Berrade, M.D. & Lee, Hyunju, 2020. "An study of cost effective maintenance policies: Age replacement versus replacement after N minimal repairs," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    15. Zhu, Zhicheng & Xiang, Yisha & Zhao, Ming & Shi, Yue, 2023. "Data-driven remanufacturing planning with parameter uncertainty," European Journal of Operational Research, Elsevier, vol. 309(1), pages 102-116.
    16. Zhang, Zhengxin & Si, Xiaosheng & Hu, Changhua & Lei, Yaguo, 2018. "Degradation data analysis and remaining useful life estimation: A review on Wiener-process-based methods," European Journal of Operational Research, Elsevier, vol. 271(3), pages 775-796.
    17. Al-Dahidi, Sameer & Di Maio, Francesco & Baraldi, Piero & Zio, Enrico, 2016. "Remaining useful life estimation in heterogeneous fleets working under variable operating conditions," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 109-124.
    18. C. Drent & S. Kapodistria & J. A. C. Resing, 2019. "Condition-based maintenance policies under imperfect maintenance at scheduled and unscheduled opportunities," Queueing Systems: Theory and Applications, Springer, vol. 93(3), pages 269-308, December.
    19. Kim, Michael Jong & Jiang, Rui & Makis, Viliam & Lee, Chi-Guhn, 2011. "Optimal Bayesian fault prediction scheme for a partially observable system subject to random failure," European Journal of Operational Research, Elsevier, vol. 214(2), pages 331-339, October.
    20. Yang, Li & Ma, Xiaobing & Peng, Rui & Zhai, Qingqing & Zhao, Yu, 2017. "A preventive maintenance policy based on dependent two-stage deterioration and external shocks," Reliability Engineering and System Safety, Elsevier, vol. 160(C), pages 201-211.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:193:y:2020:i:c:s0951832019304387. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.