A hybrid Gaussian process model for system reliability analysis
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2020.106816
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Bishop, Peter & Povyakalo, Andrey, 2017. "Deriving a frequentist conservative confidence bound for probability of failure per demand for systems with different operational and test profiles," Reliability Engineering and System Safety, Elsevier, vol. 158(C), pages 246-253.
- Perrin, G., 2016. "Active learning surrogate models for the conception of systems with multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 130-136.
- Nannapaneni, Saideep & Mahadevan, Sankaran, 2016. "Reliability analysis under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 155(C), pages 9-20.
- Echard, B. & Gayton, N. & Lemaire, M. & Relun, N., 2013. "A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 232-240.
- Bichon, Barron J. & McFarland, John M. & Mahadevan, Sankaran, 2011. "Efficient surrogate models for reliability analysis of systems with multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 96(10), pages 1386-1395.
- Hawchar, Lara & El Soueidy, Charbel-Pierre & Schoefs, Franck, 2017. "Principal component analysis and polynomial chaos expansion for time-variant reliability problems," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 406-416.
- Fauriat, W. & Gayton, N., 2014. "AK-SYS: An adaptation of the AK-MCS method for system reliability," Reliability Engineering and System Safety, Elsevier, vol. 123(C), pages 137-144.
- Xiao, Ning-Cong & Zuo, Ming J. & Zhou, Chengning, 2018. "A new adaptive sequential sampling method to construct surrogate models for efficient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 330-338.
- Stern, R.E. & Song, J. & Work, D.B., 2017. "Accelerated Monte Carlo system reliability analysis through machine-learning-based surrogate models of network connectivity," Reliability Engineering and System Safety, Elsevier, vol. 164(C), pages 1-9.
- Yang, Xufeng & Liu, Yongshou & Mi, Caiying & Tang, Chenghu, 2018. "System reliability analysis through active learning Kriging model with truncated candidate region," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 235-241.
- Rahman, Sharif, 2011. "Global sensitivity analysis by polynomial dimensional decomposition," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 825-837.
- Sadoughi, Mohammadkazem & Li, Meng & Hu, Chao, 2018. "Multivariate system reliability analysis considering highly nonlinear and dependent safety events," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 189-200.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yuan, Xiukai & Qian, Yugeng & Chen, Jingqiang & Faes, Matthias G.R. & Valdebenito, Marcos A. & Beer, Michael, 2023. "Global failure probability function estimation based on an adaptive strategy and combination algorithm," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Liu, Yang & Wang, Dewei & Sun, Xiaodong & Liu, Yang & Dinh, Nam & Hu, Rui, 2021. "Uncertainty quantification for Multiphase-CFD simulations of bubbly flows: a machine learning-based Bayesian approach supported by high-resolution experiments," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
- Yao, Wen & Zheng, Xiaohu & Zhang, Jun & Wang, Ning & Tang, Guijian, 2023. "Deep adaptive arbitrary polynomial chaos expansion: A mini-data-driven semi-supervised method for uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
- Chang, Miaoxin & Huang, Xianzhen & Coolen, Frank PA & Coolen-Maturi, Tahani, 2023. "New reliability model for complex systems based on stochastic processes and survival signature," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1349-1364.
- Mathpati, Yogesh Chandrakant & More, Kalpesh Sanjay & Tripura, Tapas & Nayek, Rajdip & Chakraborty, Souvik, 2023. "MAntRA: A framework for model agnostic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Paulino José García-Nieto & Esperanza García-Gonzalo & José Ramón Alonso Fernández & Cristina Díaz Muñiz, 2020. "A New Predictive Model for Evaluating Chlorophyll-a Concentration in Tanes Reservoir by Using a Gaussian Process Regression," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 34(15), pages 4921-4941, December.
- Xu, Yanwen & Renteria, Anabel & Wang, Pingfeng, 2022. "Adaptive surrogate models with partially observed information," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Sheibani, Mohamadreza & Ou, Ge, 2021. "Adaptive local kernels formulation of mutual information with application to active post-seismic building damage inference," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Liu, Xinyang & Zheng, Zhuoyuan & Büyüktahtakın, İ. Esra & Zhou, Zhi & Wang, Pingfeng, 2021. "Battery asset management with cycle life prognosis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Xiao, Ning-Cong & Yuan, Kai & Zhan, Hongyou, 2022. "System reliability analysis based on dependent Kriging predictions and parallel learning strategy," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
- Xu, Yanwen & Kohtz, Sara & Boakye, Jessica & Gardoni, Paolo & Wang, Pingfeng, 2023. "Physics-informed machine learning for reliability and systems safety applications: State of the art and challenges," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Qu, Pengfei & Zhang, Limao & Zhu, Qizhi & Wu, Maozhi, 2023. "Probabilistic reliability assessment of twin tunnels considering fluid–solid coupling with physics-guided machine learning," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Wang, Yuhao & Gao, Yi & Liu, Yongming & Ghosh, Sayan & Subber, Waad & Pandita, Piyush & Wang, Liping, 2021. "Bayesian-entropy gaussian process for constrained metamodeling," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
- Yang, Seonghyeok & Jo, Hwisang & Lee, Kyungeun & Lee, Ikjin, 2022. "Expected system improvement (ESI): A new learning function for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Jafary, Bentolhoda & Mele, Andrew & Fiondella, Lance, 2020. "Component-based system reliability subject to positive and negative correlation," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
- Moustafa, Kassem & Hu, Zhen & Mourelatos, Zissimos P. & Baseski, Igor & Majcher, Monica, 2021. "System reliability analysis using component-level and system-level accelerated life testing," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
- Hu, Yingshi & Lu, Zhenzhou & Jiang, Xia & Wei, Ning & Zhou, Changcong, 2021. "Time-dependent structural system reliability analysis model and its efficiency solution," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Yang, Seonghyeok & Lee, Mingyu & Lee, Ikjin, 2023. "A new sampling approach for system reliability-based design optimization under multiple simulation models," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Jiang, Chen & Qiu, Haobo & Gao, Liang & Wang, Dapeng & Yang, Zan & Chen, Liming, 2020. "EEK-SYS: System reliability analysis through estimation error-guided adaptive Kriging approximation of multiple limit state surfaces," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
- Yang, Seonghyeok & Lee, Mingyu & Lee, Ikjin, 2023. "A new sampling approach for system reliability-based design optimization under multiple simulation models," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
- Yang, Seonghyeok & Jo, Hwisang & Lee, Kyungeun & Lee, Ikjin, 2022. "Expected system improvement (ESI): A new learning function for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
- Wang, Jian & Sun, Zhili & Cao, Runan, 2021. "An efficient and robust Kriging-based method for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Gaspar, B. & Teixeira, A.P. & Guedes Soares, C., 2017. "Adaptive surrogate model with active refinement combining Kriging and a trust region method," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 277-291.
- Wei, Pengfei & Liu, Fuchao & Tang, Chenghu, 2018. "Reliability and reliability-based importance analysis of structural systems using multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 183-195.
- Guo, Qing & Liu, Yongshou & Chen, Bingqian & Yao, Qin, 2021. "A variable and mode sensitivity analysis method for structural system using a novel active learning Kriging model," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
- Zhang, Jinhao & Gao, Liang & Xiao, Mi, 2020. "A composite-projection-outline-based approximation method for system reliability analysis with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
- Yuan, Kai & Xiao, Ning-Cong & Wang, Zhonglai & Shang, Kun, 2020. "System reliability analysis by combining structure function and active learning kriging model," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
- Zhou, Yicheng & Lu, Zhenzhou & Yun, Wanying, 2020. "Active sparse polynomial chaos expansion for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
- Menz, Morgane & Gogu, Christian & Dubreuil, Sylvain & Bartoli, Nathalie & Morio, Jérôme, 2020. "Adaptive coupling of reduced basis modeling and Kriging based active learning methods for reliability analyses," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
- Wang, Jiaqi & Zhang, Limao & Yang, Hui & Liu, Huabei & Skibniewski, Mirosław J., 2024. "Dynamic reliability analysis of Aerial Building Machine under extreme wind loads using improved QBDC-based active learning," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
- Zhang, Xufang & Wang, Lei & Sørensen, John Dalsgaard, 2019. "REIF: A novel active-learning function toward adaptive Kriging surrogate models for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 440-454.
- Zhang, Jinhao & Xiao, Mi & Gao, Liang, 2019. "An active learning reliability method combining Kriging constructed with exploration and exploitation of failure region and subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 90-102.
- Jian, Wang & Zhili, Sun & Qiang, Yang & Rui, Li, 2017. "Two accuracy measures of the Kriging model for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 494-505.
- Moustapha, Maliki & Parisi, Pietro & Marelli, Stefano & Sudret, Bruno, 2024. "Reliability analysis of arbitrary systems based on active learning and global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 248(C).
- Cheng, Kai & Lu, Zhenzhou, 2021. "Adaptive Bayesian support vector regression model for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
- Hu, Yingshi & Lu, Zhenzhou & Jiang, Xia & Wei, Ning & Zhou, Changcong, 2021. "Time-dependent structural system reliability analysis model and its efficiency solution," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Wang, Zeyu & Shafieezadeh, Abdollah, 2020. "On confidence intervals for failure probability estimates in Kriging-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
- Puppo, L. & Pedroni, N. & Maio, F. Di & Bersano, A. & Bertani, C. & Zio, E., 2021. "A Framework based on Finite Mixture Models and Adaptive Kriging for Characterizing Non-Smooth and Multimodal Failure Regions in a Nuclear Passive Safety System," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
More about this item
Keywords
Hybrid Gaussian process; Randomized dependence coefficient; Adaptive multivariate probability of improvement; System reliability analysis;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:197:y:2020:i:c:s0951832019302972. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.