IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v193y2020ics0951832018306719.html
   My bibliography  Save this article

An efficient method for estimating failure probability of the structure with multiple implicit failure domains by combining Meta-IS with IS-AK

Author

Listed:
  • Zhu, Xianming
  • Lu, Zhenzhou
  • Yun, Wanying

Abstract

For efficiently estimating the failure probability of the structure with multiple implicit failure domains, a method abbreviated as Meta-IS-AK is proposed by combining the adaptive Kriging Meta model Importance Sampling (Meta-IS) and Importance Sampling based Adaptive Kriging (IS-AK). In the proposed method, the failure probability is equivalently expressed as a product of the augmented failure probability and the correction factor, then two steps are respectively established to solve two terms. In the first step, Meta-IS algorithm is executed to generate IS samples. The augmented failure probability can be estimated as a byproduct in the first step. In the second step, all these IS samples compose a sample pool, in which the AK model is subsequently reconstructed for accurately predicting failure domain indicators instead of the actual implicit limit state function. Then the failure domain indicator at each IS sample and further the correction factor can be efficiently estimated. From the strategy of the proposed method, it can be seen that the proposed Meta-IS-AK possesses both the advantages of the Meta-IS method suitable for multiple failure domains and efficiency of the AK model for accurately predicting the failure domain indicators at all IS samples, which is demonstrated by the numerical and engineering examples.

Suggested Citation

  • Zhu, Xianming & Lu, Zhenzhou & Yun, Wanying, 2020. "An efficient method for estimating failure probability of the structure with multiple implicit failure domains by combining Meta-IS with IS-AK," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
  • Handle: RePEc:eee:reensy:v:193:y:2020:i:c:s0951832018306719
    DOI: 10.1016/j.ress.2019.106644
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832018306719
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106644?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sun, Zhili & Wang, Jian & Li, Rui & Tong, Cao, 2017. "LIF: A new Kriging based learning function and its application to structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 152-165.
    2. Echard, B. & Gayton, N. & Lemaire, M. & Relun, N., 2013. "A combined Importance Sampling and Kriging reliability method for small failure probabilities with time-demanding numerical models," Reliability Engineering and System Safety, Elsevier, vol. 111(C), pages 232-240.
    3. Zhang, Xufang & Wang, Lei & Sørensen, John Dalsgaard, 2019. "REIF: A novel active-learning function toward adaptive Kriging surrogate models for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 440-454.
    4. Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
    5. Cadini, F. & Santos, F. & Zio, E., 2014. "An improved adaptive kriging-based importance technique for sampling multiple failure regions of low probability," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 109-117.
    6. Zhang, Jinhao & Xiao, Mi & Gao, Liang, 2019. "An active learning reliability method combining Kriging constructed with exploration and exploitation of failure region and subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 90-102.
    7. Xiao, Sinan & Lu, Zhenzhou & Wang, Pan, 2018. "Multivariate global sensitivity analysis for dynamic models based on wavelet analysis," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 20-30.
    8. Yun, Wanying & Lu, Zhenzhou & Jiang, Xian, 2019. "An efficient method for moment-independent global sensitivity analysis by dimensional reduction technique and principle of maximum entropy," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 174-182.
    9. Cheng, Kai & Lu, Zhenzhou, 2018. "Sparse polynomial chaos expansion based on D-MORPH regression," Applied Mathematics and Computation, Elsevier, vol. 323(C), pages 17-30.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xin, Fukang & Wang, Pan & Wang, Qirui & Li, Lei & Cheng, Lei & Lei, Huajin & Ma, Fangyun, 2024. "Parallel adaptive ensemble of metamodels combined with hypersphere sampling for rare failure events," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    2. Zhan, Hongyou & Xiao, Ning-Cong & Ji, Yuxiang, 2022. "An adaptive parallel learning dependent Kriging model for small failure probability problems," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    3. Zhang, Jinhao & Gao, Liang & Xiao, Mi, 2020. "A composite-projection-outline-based approximation method for system reliability analysis with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    4. Xu, Yanwen & Renteria, Anabel & Wang, Pingfeng, 2022. "Adaptive surrogate models with partially observed information," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Liu, Yushan & Li, Luyi & Zhao, Sihan & Song, Shufang, 2021. "A global surrogate model technique based on principal component analysis and Kriging for uncertainty propagation of dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    6. Bakeer, Tammam, 2023. "General partial safety factor theory for the assessment of the reliability of nonlinear structural systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Xiao, Mi & Zhang, Jinhao & Gao, Liang, 2020. "A system active learning Kriging method for system reliability-based design optimization with a multiple response model," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    8. Hao, Peng & Yang, Hao & Wang, Yutian & Liu, Xuanxiu & Wang, Bo & Li, Gang, 2021. "Efficient reliability-based design optimization of composite structures via isogeometric analysis," Reliability Engineering and System Safety, Elsevier, vol. 209(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Shi, Yan & Lu, Zhenzhou & He, Ruyang & Zhou, Yicheng & Chen, Siyu, 2020. "A novel learning function based on Kriging for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    2. Xiao, Sinan & Oladyshkin, Sergey & Nowak, Wolfgang, 2020. "Reliability analysis with stratified importance sampling based on adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    3. Ni, Pinghe & Li, Jun & Hao, Hong & Yan, Weimin & Du, Xiuli & Zhou, Hongyuan, 2020. "Reliability analysis and design optimization of nonlinear structures," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    4. Chen, Jiahui & Chen, Zhicheng & Xu, Yang & Li, Hui, 2021. "Efficient reliability analysis combining kriging and subset simulation with two-stage convergence criterion," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    5. Song, Kunling & Zhang, Yugang & Shen, Linjie & Zhao, Qingyan & Song, Bifeng, 2021. "A failure boundary exploration and exploitation framework combining adaptive Kriging model and sample space partitioning strategy for efficient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    6. Li, Peiping & Wang, Yu, 2022. "An active learning reliability analysis method using adaptive Bayesian compressive sensing and Monte Carlo simulation (ABCS-MCS)," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    7. Teixeira, Rui & Nogal, Maria & O’Connor, Alan & Martinez-Pastor, Beatriz, 2020. "Reliability assessment with density scanned adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    8. Saraygord Afshari, Sajad & Enayatollahi, Fatemeh & Xu, Xiangyang & Liang, Xihui, 2022. "Machine learning-based methods in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    9. Wang, Lei & Hu, Zhuo & Dang, Chao & Beer, Michael, 2024. "Refined parallel adaptive Bayesian quadrature for estimating small failure probabilities," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    10. Yang, Seonghyeok & Lee, Mingyu & Lee, Ikjin, 2023. "A new sampling approach for system reliability-based design optimization under multiple simulation models," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    11. Zhang, Yu & Dong, You & Frangopol, Dan M., 2024. "An error-based stopping criterion for spherical decomposition-based adaptive Kriging model and rare event estimation," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    12. Teixeira, Rui & Martinez-Pastor, Beatriz & Nogal, Maria & O’Connor, Alan, 2021. "Reliability analysis using a multi-metamodel complement-basis approach," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    13. Zhou, Jin & Li, Jie, 2023. "IE-AK: A novel adaptive sampling strategy based on information entropy for Kriging in metamodel-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    14. Xiao, Mi & Zhang, Jinhao & Gao, Liang, 2020. "A system active learning Kriging method for system reliability-based design optimization with a multiple response model," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    15. Wang, Jinsheng & Xu, Guoji & Yuan, Peng & Li, Yongle & Kareem, Ahsan, 2024. "An efficient and versatile Kriging-based active learning method for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    16. Li, Wenxiong & Geng, Rong & Chen, Suiyin, 2024. "CSP-free adaptive Kriging surrogate model method for reliability analysis with small failure probability," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    17. Zhang, Jinhao & Gao, Liang & Xiao, Mi, 2020. "A composite-projection-outline-based approximation method for system reliability analysis with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    18. Zhang, Yu & Dong, You & Xu, Jun, 2023. "An accelerated active learning Kriging model with the distance-based subdomain and a new stopping criterion for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    19. Wang, Yanzhong & Xie, Bin & E, Shiyuan, 2022. "Adaptive relevance vector machine combined with Markov-chain-based importance sampling for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    20. Wang, Jinsheng & Xu, Guoji & Li, Yongle & Kareem, Ahsan, 2022. "AKSE: A novel adaptive Kriging method combining sampling region scheme and error-based stopping criterion for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 219(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:193:y:2020:i:c:s0951832018306719. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.