IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v197y2020ics0951832019311287.html
   My bibliography  Save this article

Augmented sample-based approach for efficient evaluation of risk sensitivity with respect to epistemic uncertainty in distribution parameters

Author

Listed:
  • Wang, Zhenqiang
  • Jia, Gaofeng

Abstract

This paper proposes a novel augmented sample-based approach for efficient evaluation of risk sensitivity with respect to epistemic uncertainty. Calculation of the risk sensitivity (i.e., Sobol’ indices) with respect to uncertain distribution parameters entails significant computational challenges due to the need to evaluate multi-dimensional integrals, e.g., using Monte Carlo Simulation (MCS). The proposed approach addresses the challenges by defining a joint auxiliary density in the augmented space of both the uncertain distribution parameters and input random variables. It first generates one set of samples from the joint auxiliary density and then based on the corresponding marginal samples estimates the marginal auxiliary densities for the uncertain distribution parameters using kernel density estimation (KDE). Then the KDE estimates are used to efficiently calculate the Sobol’ indices. It relies on only one set of simulations to estimate Sobol’ index for all uncertain distribution parameters without the need to repeat MCS for each distribution parameter. It is especially useful and efficient for evaluation of risk sensitivity for systems with expensive models and large number of inputs and uncertain distribution parameters. The good accuracy and high efficiency of the proposed approach are demonstrated through two illustrative examples and also for different risk definitions.

Suggested Citation

  • Wang, Zhenqiang & Jia, Gaofeng, 2020. "Augmented sample-based approach for efficient evaluation of risk sensitivity with respect to epistemic uncertainty in distribution parameters," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
  • Handle: RePEc:eee:reensy:v:197:y:2020:i:c:s0951832019311287
    DOI: 10.1016/j.ress.2019.106783
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832019311287
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2019.106783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Blatman, Géraud & Sudret, Bruno, 2010. "Efficient computation of global sensitivity indices using sparse polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1216-1229.
    2. Borgonovo, E., 2007. "A new uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 92(6), pages 771-784.
    3. Nannapaneni, Saideep & Mahadevan, Sankaran, 2016. "Reliability analysis under epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 155(C), pages 9-20.
    4. Sankararaman, S. & Mahadevan, S., 2013. "Separating the contributions of variability and parameter uncertainty in probability distributions," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 187-199.
    5. Chabridon, Vincent & Balesdent, Mathieu & Bourinet, Jean-Marc & Morio, Jérôme & Gayton, Nicolas, 2018. "Reliability-based sensitivity estimators of rare event probability in the presence of distribution parameter uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 164-178.
    6. Sankararaman, Shankar & Mahadevan, Sankaran, 2011. "Likelihood-based representation of epistemic uncertainty due to sparse point data and/or interval data," Reliability Engineering and System Safety, Elsevier, vol. 96(7), pages 814-824.
    7. Sudret, Bruno, 2008. "Global sensitivity analysis using polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 964-979.
    8. Konakli, Katerina & Sudret, Bruno, 2016. "Global sensitivity analysis using low-rank tensor approximations," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 64-83.
    9. Liu, Qiao & Homma, Toshimitsu, 2009. "A new computational method of a moment-independent uncertainty importance measure," Reliability Engineering and System Safety, Elsevier, vol. 94(7), pages 1205-1211.
    10. Schöbi, Roland & Sudret, Bruno, 2019. "Global sensitivity analysis in the context of imprecise probabilities (p-boxes) using sparse polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 129-141.
    11. Jeremy E. Oakley & Anthony O'Hagan, 2004. "Probabilistic sensitivity analysis of complex models: a Bayesian approach," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 66(3), pages 751-769, August.
    12. Krzykacz-Hausmann, Bernard, 2006. "An approximate sensitivity analysis of results from complex computer models in the presence of epistemic and aleatory uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 91(10), pages 1210-1218.
    13. Andrea Saltelli, 2002. "Sensitivity Analysis for Importance Assessment," Risk Analysis, John Wiley & Sons, vol. 22(3), pages 579-590, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Zhenqiang & Jia, Gaofeng, 2023. "Extended sample-based approach for efficient sensitivity analysis of group of random variables," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Xu, Yanwen & Renteria, Anabel & Wang, Pingfeng, 2022. "Adaptive surrogate models with partially observed information," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Ajenjo, Antoine & Ardillon, Emmanuel & Chabridon, Vincent & Cogan, Scott & Sadoulet-Reboul, Emeline, 2023. "Robustness evaluation of the reliability of penstocks combining line sampling and neural networks," Reliability Engineering and System Safety, Elsevier, vol. 234(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Zhenqiang & Jia, Gaofeng, 2023. "Extended sample-based approach for efficient sensitivity analysis of group of random variables," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Barry Anderson & Emanuele Borgonovo & Marzio Galeotti & Roberto Roson, 2014. "Uncertainty in Climate Change Modeling: Can Global Sensitivity Analysis Be of Help?," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 271-293, February.
    3. Ehre, Max & Papaioannou, Iason & Straub, Daniel, 2020. "A framework for global reliability sensitivity analysis in the presence of multi-uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    4. Chen, Xin & Molina-Cristóbal, Arturo & Guenov, Marin D. & Riaz, Atif, 2019. "Efficient method for variance-based sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 97-115.
    5. Xiang Peng & Xiaoqing Xu & Jiquan Li & Shaofei Jiang, 2021. "A Sampling-Based Sensitivity Analysis Method Considering the Uncertainties of Input Variables and Their Distribution Parameters," Mathematics, MDPI, vol. 9(10), pages 1-18, May.
    6. Shang, Yue & Nogal, Maria & Teixeira, Rui & Wolfert, A.R. (Rogier) M., 2024. "Extreme-oriented sensitivity analysis using sparse polynomial chaos expansion. Application to train–track–bridge systems," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    7. Schöbi, Roland & Sudret, Bruno, 2019. "Global sensitivity analysis in the context of imprecise probabilities (p-boxes) using sparse polynomial chaos expansions," Reliability Engineering and System Safety, Elsevier, vol. 187(C), pages 129-141.
    8. Plischke, Elmar & Borgonovo, Emanuele & Smith, Curtis L., 2013. "Global sensitivity measures from given data," European Journal of Operational Research, Elsevier, vol. 226(3), pages 536-550.
    9. Li, Min & Wang, Ruo-Qian & Jia, Gaofeng, 2020. "Efficient dimension reduction and surrogate-based sensitivity analysis for expensive models with high-dimensional outputs," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    10. Daneshkhah, Alireza & Bedford, Tim, 2013. "Probabilistic sensitivity analysis of system availability using Gaussian processes," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 82-93.
    11. Konakli, Katerina & Sudret, Bruno, 2016. "Global sensitivity analysis using low-rank tensor approximations," Reliability Engineering and System Safety, Elsevier, vol. 156(C), pages 64-83.
    12. Cheng, Lei & Lu, Zhenzhou & Zhang, Leigang, 2015. "Application of Rejection Sampling based methodology to variance based parametric sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 9-18.
    13. Luyi Li & Zhenzhou Lu, 2016. "A new algorithm for importance analysis of the inputs with distribution parameter uncertainty," International Journal of Systems Science, Taylor & Francis Journals, vol. 47(13), pages 3065-3077, October.
    14. S. Cucurachi & E. Borgonovo & R. Heijungs, 2016. "A Protocol for the Global Sensitivity Analysis of Impact Assessment Models in Life Cycle Assessment," Risk Analysis, John Wiley & Sons, vol. 36(2), pages 357-377, February.
    15. Shang, Xiaobing & Su, Li & Fang, Hai & Zeng, Bowen & Zhang, Zhi, 2023. "An efficient multi-fidelity Kriging surrogate model-based method for global sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    16. Yun, Wanying & Lu, Zhenzhou & Feng, Kaixuan & Li, Luyi, 2019. "An elaborate algorithm for analyzing the Borgonovo moment-independent sensitivity by replacing the probability density function estimation with the probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 99-108.
    17. Zhai, Qingqing & Yang, Jun & Zhao, Yu, 2014. "Space-partition method for the variance-based sensitivity analysis: Optimal partition scheme and comparative study," Reliability Engineering and System Safety, Elsevier, vol. 131(C), pages 66-82.
    18. Wenbin Ruan & Zhenzhou Lu & Pengfei Wei, 2013. "Estimation of conditional moment by moving least squares and its application for importance analysis," Journal of Risk and Reliability, , vol. 227(6), pages 641-650, December.
    19. Pesenti, Silvana M. & Millossovich, Pietro & Tsanakas, Andreas, 2019. "Reverse sensitivity testing: What does it take to break the model?," European Journal of Operational Research, Elsevier, vol. 274(2), pages 654-670.
    20. Lambert, Romain S.C. & Lemke, Frank & Kucherenko, Sergei S. & Song, Shufang & Shah, Nilay, 2016. "Global sensitivity analysis using sparse high dimensional model representations generated by the group method of data handling," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 128(C), pages 42-54.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:197:y:2020:i:c:s0951832019311287. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.