IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v215y2021ics095183202100404x.html
   My bibliography  Save this article

Reliability analysis of structures with multimodal distributions based on direct probability integral method

Author

Listed:
  • Li, Luxin
  • Chen, Guohai
  • Fang, Mingxuan
  • Yang, Dixiong

Abstract

For practical structures, some input random variables follow multimodal distributions, and conventional reliability analysis methods may result in large computational errors. In this paper, a novel direct probability integral method (DPIM), which decouples governing equation of structure and the probability density integral equation (PDIE), is proposed to address the static and dynamic reliability assessment of structures involving random variables with multimodal distributions. Firstly, the multimodal probability density functions (PDFs) of input random variables are established by the Gaussian mixture model. Then, using numerical integration and smoothing technique of Dirac delta function, the PDFs of structural responses with multimodal random variables are achieved by solving the PDIE, in which three numerical integration algorithms, namely, the Quasi-Monte Carlo approach, the sparse grid approach, and Generalized F-discrepancy-based point selection approach are employed. Further, the reliability of static structure can be readily obtained by integrating the PDF of response function, while the dynamic reliability can be evaluated by DPIM combining with extreme value distribution of stochastic process. Finally, several examples demonstrate the superiority of DPIM, and the Generalized F-discrepancy-based point selection approach has the highest accuracy and efficiency for solving PDIE. The characteristics of uncertainty propagation in structures involving multimodal distributions of input random variables are revealed.

Suggested Citation

  • Li, Luxin & Chen, Guohai & Fang, Mingxuan & Yang, Dixiong, 2021. "Reliability analysis of structures with multimodal distributions based on direct probability integral method," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
  • Handle: RePEc:eee:reensy:v:215:y:2021:i:c:s095183202100404x
    DOI: 10.1016/j.ress.2021.107885
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202100404X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107885?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Yuan, Kai & Xiao, Ning-Cong & Wang, Zhonglai & Shang, Kun, 2020. "System reliability analysis by combining structure function and active learning kriging model," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    2. Heiss, Florian & Winschel, Viktor, 2008. "Likelihood approximation by numerical integration on sparse grids," Journal of Econometrics, Elsevier, vol. 144(1), pages 62-80, May.
    3. Dai, Hongzhe & Zhang, Boyi & Wang, Wei, 2015. "A multiwavelet support vector regression method for efficient reliability assessment," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 132-139.
    4. Wang, Cao & Zhang, Hao & Li, Quanwang, 2019. "Moment-based evaluation of structural reliability," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 38-45.
    5. Zhang, Xufang & Wang, Lei & Sørensen, John Dalsgaard, 2019. "REIF: A novel active-learning function toward adaptive Kriging surrogate models for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 440-454.
    6. Enys Mones & Nuno A. M. Ara'ujo & Tam'as Vicsek & Hans J. Herrmann, "undated". "Shock waves on complex networks," Working Papers ETH-RC-14-008, ETH Zurich, Chair of Systems Design.
    7. Xiao, Sinan & Oladyshkin, Sergey & Nowak, Wolfgang, 2020. "Reliability analysis with stratified importance sampling based on adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Pei, Pei & Zhou, Tong, 2023. "One-step look-ahead policy for active learning reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    2. Dang, Chao & Wei, Pengfei & Faes, Matthias G.R. & Valdebenito, Marcos A. & Beer, Michael, 2022. "Parallel adaptive Bayesian quadrature for rare event estimation," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    3. Liu, Gang & Gao, Kai & Yang, Qingshan & Tang, Wei & Law, S.S., 2021. "Improvement to the discretized initial condition of the generalized density evolution equation," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    4. Xu, Jun & Song, Jinheng & Yu, Quanfu & Kong, Fan, 2023. "Generalized distribution reconstruction based on the inversion of characteristic function curve for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    5. Luo, Changqi & Zhu, Shun-Peng & Keshtegar, Behrooz & Niu, Xiaopeng & Taylan, Osman, 2023. "An enhanced uniform simulation approach coupled with SVR for efficient structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhang, Jinhao & Gao, Liang & Xiao, Mi, 2020. "A composite-projection-outline-based approximation method for system reliability analysis with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    2. Xiao, Mi & Zhang, Jinhao & Gao, Liang, 2020. "A system active learning Kriging method for system reliability-based design optimization with a multiple response model," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    3. Yu, Shui & Ren, Yuyao & Wu, Xiao & Guo, Peng & Li, Yun, 2024. "Dynamic pruning-based Bayesian support vector regression for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    4. Roy, Atin & Chakraborty, Subrata, 2022. "Reliability analysis of structures by a three-stage sequential sampling based adaptive support vector regression model," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    5. Dhulipala, Somayajulu L.N. & Shields, Michael D. & Chakroborty, Promit & Jiang, Wen & Spencer, Benjamin W. & Hales, Jason D. & Labouré, Vincent M. & Prince, Zachary M. & Bolisetti, Chandrakanth & Che, 2022. "Reliability estimation of an advanced nuclear fuel using coupled active learning, multifidelity modeling, and subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    6. Bakeer, Tammam, 2023. "General partial safety factor theory for the assessment of the reliability of nonlinear structural systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    7. Liu, Yushan & Li, Luyi & Zhao, Sihan & Song, Shufang, 2021. "A global surrogate model technique based on principal component analysis and Kriging for uncertainty propagation of dynamic systems," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    8. Li, Peiping & Wang, Yu, 2022. "An active learning reliability analysis method using adaptive Bayesian compressive sensing and Monte Carlo simulation (ABCS-MCS)," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    9. Ni, Pinghe & Li, Jun & Hao, Hong & Yan, Weimin & Du, Xiuli & Zhou, Hongyuan, 2020. "Reliability analysis and design optimization of nonlinear structures," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    10. Sheibani, Mohamadreza & Ou, Ge, 2021. "Adaptive local kernels formulation of mutual information with application to active post-seismic building damage inference," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    11. Wang, Jian & Sun, Zhili & Cao, Runan, 2021. "An efficient and robust Kriging-based method for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    12. Roy, Atin & Chakraborty, Subrata, 2020. "Support vector regression based metamodel by sequential adaptive sampling for reliability analysis of structures," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    13. Xu, Yanwen & Renteria, Anabel & Wang, Pingfeng, 2022. "Adaptive surrogate models with partially observed information," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    14. Chen, Jiahui & Chen, Zhicheng & Xu, Yang & Li, Hui, 2021. "Efficient reliability analysis combining kriging and subset simulation with two-stage convergence criterion," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    15. Yang, Seonghyeok & Lee, Mingyu & Lee, Ikjin, 2023. "A new sampling approach for system reliability-based design optimization under multiple simulation models," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    16. Song, Kunling & Zhang, Yugang & Shen, Linjie & Zhao, Qingyan & Song, Bifeng, 2021. "A failure boundary exploration and exploitation framework combining adaptive Kriging model and sample space partitioning strategy for efficient reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    17. Yang, Seonghyeok & Jo, Hwisang & Lee, Kyungeun & Lee, Ikjin, 2022. "Expected system improvement (ESI): A new learning function for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    18. Teixeira, Rui & Martinez-Pastor, Beatriz & Nogal, Maria & O’Connor, Alan, 2021. "Reliability analysis using a multi-metamodel complement-basis approach," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    19. Jingkui Li & Wenqi Liu & Yan Zhou & Zhandong Li, 2023. "An active learning Kriging-based method combining the weight information entropy function and the adaptive candidate sample pool," Journal of Risk and Reliability, , vol. 237(4), pages 741-751, August.
    20. Wang, Jinsheng & Xu, Guoji & Yuan, Peng & Li, Yongle & Kareem, Ahsan, 2024. "An efficient and versatile Kriging-based active learning method for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 241(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:215:y:2021:i:c:s095183202100404x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.