IDEAS home Printed from https://ideas.repec.org/a/hin/jnlmpe/569016.html
   My bibliography  Save this article

Improved Reliability-Based Optimization with Support Vector Machines and Its Application in Aircraft Wing Design

Author

Listed:
  • Yu Wang
  • Xiongqing Yu
  • Xiaoping Du

Abstract

A new reliability-based design optimization (RBDO) method based on support vector machines (SVM) and the Most Probable Point (MPP) is proposed in this work. SVM is used to create a surrogate model of the limit-state function at the MPP with the gradient information in the reliability analysis. This guarantees that the surrogate model not only passes through the MPP but also is tangent to the limit-state function at the MPP. Then, importance sampling (IS) is used to calculate the probability of failure based on the surrogate model. This treatment significantly improves the accuracy of reliability analysis. For RBDO, the Sequential Optimization and Reliability Assessment (SORA) is employed as well, which decouples deterministic optimization from the reliability analysis. The improved SVM-based reliability analysis is used to amend the error from linear approximation for limit-state function in SORA. A mathematical example and a simplified aircraft wing design demonstrate that the improved SVM-based reliability analysis is more accurate than FORM and needs less training points than the Monte Carlo simulation and that the proposed optimization strategy is efficient.

Suggested Citation

  • Yu Wang & Xiongqing Yu & Xiaoping Du, 2015. "Improved Reliability-Based Optimization with Support Vector Machines and Its Application in Aircraft Wing Design," Mathematical Problems in Engineering, Hindawi, vol. 2015, pages 1-14, September.
  • Handle: RePEc:hin:jnlmpe:569016
    DOI: 10.1155/2015/569016
    as

    Download full text from publisher

    File URL: http://downloads.hindawi.com/journals/MPE/2015/569016.pdf
    Download Restriction: no

    File URL: http://downloads.hindawi.com/journals/MPE/2015/569016.xml
    Download Restriction: no

    File URL: https://libkey.io/10.1155/2015/569016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yuan, Xiukai & Qian, Yugeng & Chen, Jingqiang & Faes, Matthias G.R. & Valdebenito, Marcos A. & Beer, Michael, 2023. "Global failure probability function estimation based on an adaptive strategy and combination algorithm," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    2. Ma, Yuan-Zhuo & Jin, Xiang-Xiang & Wu, Xi-Long & Xu, Chang & Li, Hong-Shuang & Zhao, Zhen-Zhou, 2023. "Reliability-based design optimization using adaptive Kriging-A single-loop strategy and a double-loop one," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Xu, Yanwen & Renteria, Anabel & Wang, Pingfeng, 2022. "Adaptive surrogate models with partially observed information," Reliability Engineering and System Safety, Elsevier, vol. 225(C).

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:hin:jnlmpe:569016. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Mohamed Abdelhakeem (email available below). General contact details of provider: https://www.hindawi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.