IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v234y2023ics0951832023000650.html
   My bibliography  Save this article

General partial safety factor theory for the assessment of the reliability of nonlinear structural systems

Author

Listed:
  • Bakeer, Tammam

Abstract

The paper develops a novel and general theory for characterizing the nonlinearity of structural systems and for applying partial safety factors to these systems. The theory establishes a key relationship between the partial safety factor concept and the reliability theory of nonlinear structural systems, using the degree of homogeneity as a measure of nonlinearity at the design point. This measure allows for an efficient mathematical decoupling of the reliability index into nonlinearity-invariant partial reliability indexes. This formulation enables the identification of critical safety situations in extreme cases of nonlinearities in complex nonlinear structural systems. The theory leads to two main outcomes based on the asymptotic behavior of the reliability index. First, the reliability index of any nonlinear structural system is always bounded between an upper and lower bound, which can be determined using the concept of nonlinearity-invariant partial reliability indexes. Second, nonlinearity-invariant critical partial safety factors ensure that the reliability index is greater than the target reliability index.

Suggested Citation

  • Bakeer, Tammam, 2023. "General partial safety factor theory for the assessment of the reliability of nonlinear structural systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
  • Handle: RePEc:eee:reensy:v:234:y:2023:i:c:s0951832023000650
    DOI: 10.1016/j.ress.2023.109150
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023000650
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109150?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Jian & Gong, Weijie & Yue, Xinxin & Shi, Maolin & Chen, Lei, 2022. "Efficient reliability analysis using prediction-oriented active sparse polynomial chaos expansion," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    2. Ma, Yuan-Zhuo & Zhu, Yi-Chen & Li, Hong-Shuang & Nan, Hang & Zhao, Zhen-Zhou & Jin, Xiang-Xiang, 2022. "Adaptive Kriging-based failure probability estimation for multiple responses," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Zhu, Xianming & Lu, Zhenzhou & Yun, Wanying, 2020. "An efficient method for estimating failure probability of the structure with multiple implicit failure domains by combining Meta-IS with IS-AK," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    4. Shi, Yan & Lu, Zhenzhou & He, Ruyang & Zhou, Yicheng & Chen, Siyu, 2020. "A novel learning function based on Kriging for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    5. Lim, HyeongUk & Manuel, Lance, 2021. "Distribution-free polynomial chaos expansion surrogate models for efficient structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    6. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    7. Ameryan, Ala & Ghalehnovi, Mansour & Rashki, Mohsen, 2022. "AK-SESC: a novel reliability procedure based on the integration of active learning kriging and sequential space conversion method," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    8. Yuan, Kai & Xiao, Ning-Cong & Wang, Zhonglai & Shang, Kun, 2020. "System reliability analysis by combining structure function and active learning kriging model," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    9. Lee, Seunggyu, 2021. "Monte Carlo simulation using support vector machine and kernel density for failure probability estimation," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    10. Zhou, Jin & Li, Jie, 2023. "IE-AK: A novel adaptive sampling strategy based on information entropy for Kriging in metamodel-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    11. Cheng, Kai & Lu, Zhenzhou, 2021. "Adaptive Bayesian support vector regression model for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 206(C).
    12. Yi, Jiaxiang & Cheng, Yuansheng & Liu, Jun, 2022. "A novel fidelity selection strategy-guided multifidelity kriging algorithm for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    13. Roy, Atin & Chakraborty, Subrata, 2020. "Support vector regression based metamodel by sequential adaptive sampling for reliability analysis of structures," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    14. Wang, Jian & Sun, Zhili & Cao, Runan, 2021. "An efficient and robust Kriging-based method for system reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    15. Song, Shufang & Lu, Zhenzhou & Qiao, Hongwei, 2009. "Subset simulation for structural reliability sensitivity analysis," Reliability Engineering and System Safety, Elsevier, vol. 94(2), pages 658-665.
    16. Ni, Pinghe & Li, Jun & Hao, Hong & Yan, Weimin & Du, Xiuli & Zhou, Hongyuan, 2020. "Reliability analysis and design optimization of nonlinear structures," Reliability Engineering and System Safety, Elsevier, vol. 198(C).
    17. Xiao, Sinan & Oladyshkin, Sergey & Nowak, Wolfgang, 2020. "Reliability analysis with stratified importance sampling based on adaptive Kriging," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Shui & Ren, Yuyao & Wu, Xiao & Guo, Peng & Li, Yun, 2024. "Dynamic pruning-based Bayesian support vector regression for reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 244(C).
    2. Mathpati, Yogesh Chandrakant & More, Kalpesh Sanjay & Tripura, Tapas & Nayek, Rajdip & Chakraborty, Souvik, 2023. "MAntRA: A framework for model agnostic reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    3. Luo, Changqi & Zhu, Shun-Peng & Keshtegar, Behrooz & Niu, Xiaopeng & Taylan, Osman, 2023. "An enhanced uniform simulation approach coupled with SVR for efficient structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Xu, Yanwen & Renteria, Anabel & Wang, Pingfeng, 2022. "Adaptive surrogate models with partially observed information," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    5. Zhang, Zheng & Wang, Pan & Hu, Huanhuan & Li, Lei & Li, Haihe & Yue, Zhufeng, 2022. "Efficient reliability-based design optimization for hydraulic pipeline with adaptive sampling region," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    6. Xiao, Mi & Zhang, Jinhao & Gao, Liang, 2020. "A system active learning Kriging method for system reliability-based design optimization with a multiple response model," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    7. Zhang, Jinhao & Gao, Liang & Xiao, Mi, 2020. "A composite-projection-outline-based approximation method for system reliability analysis with hybrid uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    8. Zhou, Tong & Peng, Yongbo, 2022. "Reliability analysis using adaptive Polynomial-Chaos Kriging and probability density evolution method," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    9. Lima, João P.S. & Evangelista, F. & Guedes Soares, C., 2023. "Hyperparameter-optimized multi-fidelity deep neural network model associated with subset simulation for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    10. Dhulipala, Somayajulu L.N. & Shields, Michael D. & Chakroborty, Promit & Jiang, Wen & Spencer, Benjamin W. & Hales, Jason D. & Labouré, Vincent M. & Prince, Zachary M. & Bolisetti, Chandrakanth & Che, 2022. "Reliability estimation of an advanced nuclear fuel using coupled active learning, multifidelity modeling, and subset simulation," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    11. Li, Peiping & Wang, Yu, 2022. "An active learning reliability analysis method using adaptive Bayesian compressive sensing and Monte Carlo simulation (ABCS-MCS)," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    12. Li, Xiaoke & Zhu, Heng & Chen, Zhenzhong & Ming, Wuyi & Cao, Yang & He, Wenbin & Ma, Jun, 2022. "Limit state Kriging modeling for reliability-based design optimization through classification uncertainty quantification," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    13. Roy, Atin & Chakraborty, Subrata, 2023. "Support vector machine in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    14. Saraygord Afshari, Sajad & Enayatollahi, Fatemeh & Xu, Xiangyang & Liang, Xihui, 2022. "Machine learning-based methods in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    15. Pepper, Nick & Crespo, Luis & Montomoli, Francesco, 2022. "Adaptive learning for reliability analysis using Support Vector Machines," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    16. Yuan, Kai & Sui, Xi & Zhang, Shijie & Xiao, Ning-cong & Hu, Jinghan, 2024. "AK-SYS-IE: A novel adaptive Kriging-based method for system reliability assessment combining information entropy," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    17. Zhou, Jin & Li, Jie, 2023. "IE-AK: A novel adaptive sampling strategy based on information entropy for Kriging in metamodel-based reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    18. Xiao, Ning-Cong & Yuan, Kai & Zhan, Hongyou, 2022. "System reliability analysis based on dependent Kriging predictions and parallel learning strategy," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    19. Wang, Jinsheng & Xu, Guoji & Yuan, Peng & Li, Yongle & Kareem, Ahsan, 2024. "An efficient and versatile Kriging-based active learning method for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    20. Yu, Ting & Lu, Zhenzhou & Yun, Wanying, 2023. "An efficient algorithm for analyzing multimode structure system reliability by a new learning function of most reducing average probability of misjudging system state," Reliability Engineering and System Safety, Elsevier, vol. 230(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:234:y:2023:i:c:s0951832023000650. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.