IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v230y2023ics0951832022005476.html
   My bibliography  Save this article

Semi-supervised health assessment of pipeline systems based on optical fiber monitoring

Author

Listed:
  • Jiang, Shengyu
  • He, Rui
  • Chen, Guoming
  • Zhu, Yuan
  • Shi, Jiaming
  • Liu, Kang
  • Chang, Yuanjiang

Abstract

Health assessment of pipeline systems is of deep significance for improving pipeline reliability and integrity. Traditional health assessment methods may be difficult or costly to perform on pipeline systems due to the long distances and environmental constraints of pipelines. This paper incorporates the distributed optical fiber sensor (DOFS) technique and the semi-supervised learning algorithm into the pipeline health assessment framework. Three critical problems that limit the application of DOFS in pipeline health assessments are addressed. First, an applicable damage monitoring experiment of a pipeline system is designed, which is effective in obtaining the necessary base data for data-driven modeling. Second, the correspondence between the pipeline health status and the monitored strain features is established. The experimental data are shared for public research, which is expected to solve the problem of the lack of benchmark research data in related fields. Third, considering the scarcity of labeled degradation data in pipelines, a semi-supervised denoising autoencoder model is proposed specifically for pipeline health assessment. The proposed method is demonstrated and validated using a comparative experimental case study.

Suggested Citation

  • Jiang, Shengyu & He, Rui & Chen, Guoming & Zhu, Yuan & Shi, Jiaming & Liu, Kang & Chang, Yuanjiang, 2023. "Semi-supervised health assessment of pipeline systems based on optical fiber monitoring," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005476
    DOI: 10.1016/j.ress.2022.108932
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832022005476
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108932?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Yong & Xin, Yuqi & Liu, Zhi-wei & Chi, Ming & Ma, Guijun, 2022. "Health status assessment and remaining useful life prediction of aero-engine based on BiGRU and MMoE," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    2. Li, Xinhong & Jia, Ruichao & Zhang, Renren & Yang, Shangyu & Chen, Guoming, 2022. "A KPCA-BRANN based data-driven approach to model corrosion degradation of subsea oil pipelines," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    3. Xu, Zhaoyi & Saleh, Joseph Homer, 2021. "Machine learning for reliability engineering and safety applications: Review of current status and future opportunities," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    4. He, Rui & Dai, Yiyang & Lu, Jiachen & Mou, Chuanlin, 2018. "Developing ladder network for intelligent evaluation system: Case of remaining useful life prediction for centrifugal pumps," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 385-393.
    5. Azar, Kamyar & Hajiakhondi-Meybodi, Zohreh & Naderkhani, Farnoosh, 2022. "Semi-supervised clustering-based method for fault diagnosis and prognosis: A case study," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    6. Saraygord Afshari, Sajad & Enayatollahi, Fatemeh & Xu, Xiangyang & Liang, Xihui, 2022. "Machine learning-based methods in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Miao, Xingyuan & Zhao, Hong, 2023. "Novel method for residual strength prediction of defective pipelines based on HTLBO-DELM model," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Liang, Tao & Wang, Fuli & Wang, Shu & Li, Kang & Mo, Xuelei & Lu, Di, 2024. "Machinery health prognostic with uncertainty for mineral processing using TSC-TimeGAN," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    3. Lian, Zheng & Zhou, Zhi-Jie & Hu, Chang-Hua & Wang, Jie & Zhang, Chun-Chao & Zhang, Chao-Li, 2024. "A health assessment method with attribute importance modeling for complex systems using belief rule base," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    4. Xiaoyu Cheng & Guangyu Qian & Wei He & Guohui Zhou, 2022. "A Liquid Launch Vehicle Safety Assessment Model Based on Semi-Quantitative Interval Belief Rule Base," Mathematics, MDPI, vol. 10(24), pages 1-24, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cao, Bohan & Yin, Qishuai & Guo, Yingying & Yang, Jin & Zhang, Laibin & Wang, Zhenquan & Tyagi, Mayank & Sun, Ting & Zhou, Xu, 2023. "Field data analysis and risk assessment of shallow gas hazards based on neural networks during industrial deep-water drilling," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    2. Pan, Yongjun & Sun, Yu & Li, Zhixiong & Gardoni, Paolo, 2023. "Machine learning approaches to estimate suspension parameters for performance degradation assessment using accurate dynamic simulations," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    3. Phan, Hieu Chi & Dhar, Ashutosh Sutra & Bui, Nang Duc, 2023. "Reliability assessment of pipelines crossing strike-slip faults considering modeling uncertainties using ANN models," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    4. Liu, Jiale & Wang, Huan, 2024. "A brain-inspired energy-efficient Wide Spiking Residual Attention Framework for intelligent fault diagnosis," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    5. Wang, Chu & Dou, Manfeng & Li, Zhongliang & Outbib, Rachid & Zhao, Dongdong & Zuo, Jian & Wang, Yuanlin & Liang, Bin & Wang, Peng, 2023. "Data-driven prognostics based on time-frequency analysis and symbolic recurrent neural network for fuel cells under dynamic load," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    6. Zhang, Qing & Tang, Lv & Xuan, Jianping & Shi, Tielin & Li, Rui, 2023. "An uncertainty relevance metric-based domain adaptation fault diagnosis method to overcome class relevance caused confusion," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    7. Ma, Yulin & Li, Lei & Yang, Jun, 2022. "Convolutional kernel aggregated domain adaptation for intelligent fault diagnosis with label noise," Reliability Engineering and System Safety, Elsevier, vol. 227(C).
    8. Dai, Le & Guo, Junyu & Wan, Jia-Lun & Wang, Jiang & Zan, Xueping, 2022. "A reliability evaluation model of rolling bearings based on WKN-BiGRU and Wiener process," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    9. Khakifirooz, Marzieh & Fathi, Michel & Lee, I-Chen & Tseng, Sheng-Tsaing, 2023. "Neural ordinary differential equation for sequential optimal design of fatigue test under accelerated life test analysis," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    10. Xu, Zidong & Wang, Hao & Zhao, Kaiyong & Zhang, Han & Liu, Yun & Lin, Yuxuan, 2024. "Evolutionary probability density reconstruction of stochastic dynamic responses based on physics-aided deep learning," Reliability Engineering and System Safety, Elsevier, vol. 246(C).
    11. Tang, Shengnan & Zhu, Yong & Yuan, Shouqi, 2022. "Intelligent fault identification of hydraulic pump using deep adaptive normalized CNN and synchrosqueezed wavelet transform," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    12. Roy, Atin & Chakraborty, Subrata, 2023. "Support vector machine in structural reliability analysis: A review," Reliability Engineering and System Safety, Elsevier, vol. 233(C).
    13. Liu, Junqiang & Yu, Zhuoqian & Zuo, Hongfu & Fu, Rongchunxue & Feng, Xiaonan, 2022. "Multi-stage residual life prediction of aero-engine based on real-time clustering and combined prediction model," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    14. Zheng, Minglei & Man, Junfeng & Wang, Dian & Chen, Yanan & Li, Qianqian & Liu, Yong, 2023. "Semi-supervised multivariate time series anomaly detection for wind turbines using generator SCADA data," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    15. Giannakeas, Ilias N. & Mazaheri, Fatemeh & Bacarreza, Omar & Khodaei, Zahra Sharif & Aliabadi, Ferri M.H., 2023. "Probabilistic residual strength assessment of smart composite aircraft panels using guided waves," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    16. Chen, Zhanfeng & Li, Xuyao & Wang, Wen & Li, Yan & Shi, Lei & Li, Yuxing, 2023. "Residual strength prediction of corroded pipelines using multilayer perceptron and modified feedforward neural network," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    17. Wang, Ying & Zheng, Xueke & Wang, Le & Lu, Gavin & Jia, Yixing & Li, Kezhi & Li, Mian, 2023. "Sensor fault detection of vehicle suspension systems based on transmissibility operators and Neyman–Pearson test," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    18. Wang, Run-Zi & Gu, Hang-Hang & Zhu, Shun-Peng & Li, Kai-Shang & Wang, Ji & Wang, Xiao-Wei & Hideo, Miura & Zhang, Xian-Cheng & Tu, Shan-Tung, 2022. "A data-driven roadmap for creep-fatigue reliability assessment and its implementation in low-pressure turbine disk at elevated temperatures," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    19. Zhou, Jie & Lin, Haifei & Li, Shugang & Jin, Hongwei & Zhao, Bo & Liu, Shihao, 2023. "Leakage diagnosis and localization of the gas extraction pipeline based on SA-PSO BP neural network," Reliability Engineering and System Safety, Elsevier, vol. 232(C).
    20. Lima, João P.S. & Evangelista, F. & Guedes Soares, C., 2023. "Hyperparameter-optimized multi-fidelity deep neural network model associated with subset simulation for structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:230:y:2023:i:c:s0951832022005476. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.