Hybrid Bayesian network-based landslide risk assessment method for modeling risk for industrial facilities subjected to landslides
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2021.107851
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Sättele, Martina & Bründl, Michael & Straub, Daniel, 2015. "Reliability and effectiveness of early warning systems for natural hazards: Concept and application to debris flow warning," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 192-202.
- Langseth, Helge & Nielsen, Thomas D. & RumÃ, Rafael & Salmerón, Antonio, 2009. "Inference in hybrid Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1499-1509.
- Li, Dian-Qing & Tang, Xiao-Song & Phoon, Kok-Kwang, 2015. "Bootstrap method for characterizing the effect of uncertainty in shear strength parameters on slope reliability," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 99-106.
- Lam, Juan Carlos & Adey, Bryan T. & Heitzler, Magnus & Hackl, Jürgen & Gehl, Pierre & van Erp, Noel & D'Ayala, Dina & van Gelder, Pieter & Hurni, Lorenz, 2018. "Stress tests for a road network using fragility functions and functional capacity loss functions," Reliability Engineering and System Safety, Elsevier, vol. 173(C), pages 78-93.
- Pan, Yue & Ou, Shenwei & Zhang, Limao & Zhang, Wenjing & Wu, Xianguo & Li, Heng, 2019. "Modeling risks in dependent systems: A Copula-Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 416-431.
- Khakzad, Nima, 2015. "Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 263-272.
- Khakzad, Nima, 2019. "Modeling wildfire spread in wildland-industrial interfaces using dynamic Bayesian network," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 165-176.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Hunte, Joshua L. & Neil, Martin & Fenton, Norman E., 2024. "A hybrid Bayesian network for medical device risk assessment and management," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Lan, Meng & Gardoni, Paolo & Qin, Rongshui & Zhang, Xiao & Zhu, Jiping & Lo, Siuming, 2022. "Modeling NaTech-related domino effects in process clusters: A network-based approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
- Caratozzolo, Vincenzo & Misuri, Alessio & Cozzani, Valerio, 2022. "A generalized equipment vulnerability model for the quantitative risk assessment of horizontal vessels involved in Natech scenarios triggered by floods," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
- Lan, Meng & Gardoni, Paolo & Weng, Wenguo & Shen, Kaixin & He, Zhichao & Pan, Rongliang, 2024. "Modeling the evolution of industrial accidents triggered by natural disasters using dynamic graphs: A case study of typhoon-induced domino accidents in storage tank areas," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- Misuri, Alessio & Ricci, Federica & Sorichetti, Riccardo & Cozzani, Valerio, 2023. "The Effect of Safety Barrier Degradation on the Severity of Primary Natech Scenarios," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
- Li, Yajun & Qian, Cheng & Zhang, Bin & Xu, Nengxiong, 2024. "Reliability and landslide consequence analysis of long heterogeneous soil infrastructure slopes: A parallel computing investigation," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
- Yunfeng Yang & Guohua Chen & Yuanfei Zhao, 2023. "A Quantitative Framework for Propagation Paths of Natech Domino Effects in Chemical Industrial Parks: Part I—Failure Analysis," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
- Chen, Xi & Bose, Neil & Brito, Mario & Khan, Faisal & Thanyamanta, Bo & Zou, Ting, 2021. "A Review of Risk Analysis Research for the Operations of Autonomous Underwater Vehicles," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
- Fu, Lipeng & Wang, Xueqing & Zhao, Heng & Li, Mengnan, 2022. "Interactions among safety risks in metro deep foundation pit projects: An association rule mining-based modeling framework," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
- Laobing Zhang & Gabriele Landucci & Genserik Reniers & Nima Khakzad & Jianfeng Zhou, 2018. "DAMS: A Model to Assess Domino Effects by Using Agent‐Based Modeling and Simulation," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1585-1600, August.
- Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Yan-Feng Li & Jinhua Mi & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Dynamic fault tree analysis based on continuous-time Bayesian networks under fuzzy numbers," Journal of Risk and Reliability, , vol. 229(6), pages 530-541, December.
- Li, Mei & Liu, Zixian & Li, Xiaopeng & Liu, Yiliu, 2019. "Dynamic risk assessment in healthcare based on Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 327-334.
- De Iuliis, Melissa & Kammouh, Omar & Cimellaro, Gian Paolo & Tesfamariam, Solomon, 2021. "Quantifying restoration time of power and telecommunication lifelines after earthquakes using Bayesian belief network model," Reliability Engineering and System Safety, Elsevier, vol. 208(C).
- Khakzad, Nima & Reniers, Genserik & Abbassi, Rouzbeh & Khan, Faisal, 2016. "Vulnerability analysis of process plants subject to domino effects," Reliability Engineering and System Safety, Elsevier, vol. 154(C), pages 127-136.
- Luo, Changqi & Zhu, Shun-Peng & Keshtegar, Behrooz & Niu, Xiaopeng & Taylan, Osman, 2023. "An enhanced uniform simulation approach coupled with SVR for efficient structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
- Wang, Wenhao & Wang, Yanhui & Wang, Guangxing & Li, Man & Jia, Limin, 2023. "Identification of the critical accident causative factors in the urban rail transit system by complex network theory," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 610(C).
- Marquez, David & Neil, Martin & Fenton, Norman, 2010. "Improved reliability modeling using Bayesian networks and dynamic discretization," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 412-425.
- Yu, Shui & Wang, Zhonglai & Zhang, Kewang, 2018. "Sequential time-dependent reliability analysis for the lower extremity exoskeleton under uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 45-52.
- Khakzad, Nima, 2021. "Optimal firefighting to prevent domino effects: Methodologies based on dynamic influence diagram and mathematical programming," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
- Ding, Long & Khan, Faisal & Abbassi, Rouzbeh & Ji, Jie, 2019. "FSEM: An approach to model contribution of synergistic effect of fires for domino effects," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 271-278.
- Wang, Fan & Li, Heng & Dong, Chao & Ding, Lieyun, 2019. "Knowledge representation using non-parametric Bayesian networks for tunneling risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
- Zhou, Jianxiong & Wei, Shanbi & Chai, Yi, 2021. "Using improved dynamic Bayesian networks in reliability evaluation for flexible test system of aerospace pyromechanical device products," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
- Zio, Enrico, 2016. "Challenges in the vulnerability and risk analysis of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 152(C), pages 137-150.
- Minhe Luo & Ding Wang & Xuchun Wang & Zelin Lu, 2023. "Analysis of Surface Settlement Induced by Shield Tunnelling: Grey Relational Analysis and Numerical Simulation Study on Critical Construction Parameters," Sustainability, MDPI, vol. 15(19), pages 1-21, September.
More about this item
Keywords
Landslide; Hybrid Bayesian network; Domino effect; Storage tank; Slope-industrial interfaces (SIIs);All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:215:y:2021:i:c:s0951832021003707. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.