Modeling wildfire spread in wildland-industrial interfaces using dynamic Bayesian network
Author
Abstract
Suggested Citation
DOI: 10.1016/j.ress.2019.04.006
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Stepanov, Alexander & Smith, James MacGregor, 2012. "Modeling wildfire propagation with Delaunay triangulation and shortest path algorithms," European Journal of Operational Research, Elsevier, vol. 218(3), pages 775-788.
- Nima Khakzad & Faisal Khan & Paul Amyotte & Valerio Cozzani, 2013. "Domino Effect Analysis Using Bayesian Networks," Risk Analysis, John Wiley & Sons, vol. 33(2), pages 292-306, February.
- M. Flannigan & B. Wotton & G. Marshall & W. de Groot & J. Johnston & N. Jurko & A. Cantin, 2016. "Fuel moisture sensitivity to temperature and precipitation: climate change implications," Climatic Change, Springer, vol. 134(1), pages 59-71, January.
- Khakzad, Nima, 2015. "Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 263-272.
- Drossel, B. & Schwabl, F., 1992. "Self-organized criticality in a forest-fire model," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 191(1), pages 47-50.
- Joe Scott & Don Helmbrecht & Matthew Thompson & David Calkin & Kate Marcille, 2012. "Probabilistic assessment of wildfire hazard and municipal watershed exposure," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 64(1), pages 707-728, October.
- M. D. Flannigan & B. M. Wotton & G. A. Marshall & W. J. de Groot & J. Johnston & N. Jurko & A. S. Cantin, 2016. "Fuel moisture sensitivity to temperature and precipitation: climate change implications," Climatic Change, Springer, vol. 134(1), pages 59-71, January.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Yang, Yunfeng & Chen, Guohua & Reniers, Genserik, 2020. "Vulnerability assessment of atmospheric storage tanks to floods based on logistic regression," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
- Lan, Meng & Gardoni, Paolo & Qin, Rongshui & Zhang, Xiao & Zhu, Jiping & Lo, Siuming, 2022. "Modeling NaTech-related domino effects in process clusters: A network-based approach," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
- Caratozzolo, Vincenzo & Misuri, Alessio & Cozzani, Valerio, 2022. "A generalized equipment vulnerability model for the quantitative risk assessment of horizontal vessels involved in Natech scenarios triggered by floods," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
- Yunfeng Yang & Guohua Chen & Yuanfei Zhao, 2023. "A Quantitative Framework for Propagation Paths of Natech Domino Effects in Chemical Industrial Parks: Part I—Failure Analysis," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
- Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
- Lan, Meng & Zhu, Jiping & Lo, Siuming, 2021. "Hybrid Bayesian network-based landslide risk assessment method for modeling risk for industrial facilities subjected to landslides," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
- Wu, Jiansong & Bai, Yiping & Fang, Weipeng & Zhou, Rui & Reniers, Genserik & Khakzad, Nima, 2021. "An Integrated Quantitative Risk Assessment Method for Urban Underground Utility Tunnels," Reliability Engineering and System Safety, Elsevier, vol. 213(C).
- Yunfeng Yang & Guohua Chen & Yuanfei Zhao, 2023. "A Quantitative Framework for Propagation Paths of Natech Domino Effects in Chemical Industrial Parks: Part II—Risk Assessment and Mitigation System," Sustainability, MDPI, vol. 15(10), pages 1-19, May.
- Naderpour, Mohsen & Rizeei, Hossein Mojaddadi & Khakzad, Nima & Pradhan, Biswajeet, 2019. "Forest fire induced Natech risk assessment: A survey of geospatial technologies," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
- Ye Zheng & Yazhou Xie & Xuejiao Long, 2021. "A comprehensive review of Bayesian statistics in natural hazards engineering," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 108(1), pages 63-91, August.
- Ricci, Federica & Misuri, Alessio & Scarponi, Giordano Emrys & Cozzani, Valerio & Demichela, Micaela, 2024. "Vulnerability Assessment of Industrial Sites to Interface Fires and Wildfires," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Khakzad, Nima & Cozzani, Valerio, 2020. "Special issue: Quantitative assessment and risk management of Natech accidents," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Laobing Zhang & Gabriele Landucci & Genserik Reniers & Nima Khakzad & Jianfeng Zhou, 2018. "DAMS: A Model to Assess Domino Effects by Using Agent‐Based Modeling and Simulation," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1585-1600, August.
- Khakzad, Nima, 2021. "Optimal firefighting to prevent domino effects: Methodologies based on dynamic influence diagram and mathematical programming," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
- Ding, Long & Khan, Faisal & Abbassi, Rouzbeh & Ji, Jie, 2019. "FSEM: An approach to model contribution of synergistic effect of fires for domino effects," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 271-278.
- Megan C. Kirchmeier-Young & Francis W. Zwiers & Nathan P. Gillett & Alex J. Cannon, 2017. "Attributing extreme fire risk in Western Canada to human emissions," Climatic Change, Springer, vol. 144(2), pages 365-379, September.
- Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
- Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
- Yang, Ruochen & Khan, Faisal & Neto, Eugenio Turco & Rusli, Riza & Ji, Jie, 2020. "Could pool fire alone cause a domino effect?," Reliability Engineering and System Safety, Elsevier, vol. 202(C).
- Anuj Tiwari & Mohammad Shoab & Abhilasha Dixit, 2021. "GIS-based forest fire susceptibility modeling in Pauri Garhwal, India: a comparative assessment of frequency ratio, analytic hierarchy process and fuzzy modeling techniques," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(2), pages 1189-1230, January.
- Guo, Xiaoxue & Ding, Long & Ji, Jie & Cozzani, Valerio, 2022. "A cost-effective optimization model of safety investment allocation for risk reduction of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
- Nobel, Anne & Lizin, Sebastien & Witters, Nele & Rineau, Francois & Malina, Robert, 2020. "The impact of wildfires on the recreational value of heathland: A discrete factor approach with adjustment for on-site sampling," Journal of Environmental Economics and Management, Elsevier, vol. 101(C).
- Ding, Long & Khan, Faisal & Ji, Jie, 2022. "A novel vulnerability model considering synergistic effect of fire and overpressure in chemical processing facilities," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
- Hadi Beygi Heidarlou & Melina Gholamzadeh Bazarbash & Stelian Alexandru Borz, 2024. "Unveiling the Role of Climate and Environmental Dynamics in Shaping Forest Fire Patterns in Northern Zagros, Iran," Land, MDPI, vol. 13(9), pages 1-19, September.
- Khakzad, Nima, 2023. "A goal programming approach to multi-objective optimization of firefighting strategies in the event of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
- Khakzad, Nima & Reniers, Genserik, 2019. "Low-capacity utilization of process plants: A cost-robust approach to tackle man-made domino effects," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
- Nima Khakzad & Gabriele Landucci & Genserik Reniers, 2017. "Application of Graph Theory to Cost‐Effective Fire Protection of Chemical Plants During Domino Effects," Risk Analysis, John Wiley & Sons, vol. 37(9), pages 1652-1667, September.
- Aydin Azizi, 2018. "Computer-Based Analysis of the Stochastic Stability of Mechanical Structures Driven by White and Colored Noise," Sustainability, MDPI, vol. 10(10), pages 1-19, September.
- Gholamizadeh, Kamran & Zarei, Esmaeil & Yazdi, Mohammad & Ramezanifar, Ehsan & Aliabadi, Mostafa Mirzaei, 2024. "A hybrid model for dynamic analysis of domino effects in chemical process industries," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
- April M. Melvin & Jessica Murray & Brent Boehlert & Jeremy A. Martinich & Lisa Rennels & T. Scott Rupp, 2017. "Estimating wildfire response costs in Alaska’s changing climate," Climatic Change, Springer, vol. 141(4), pages 783-795, April.
- Ricci, Federica & Misuri, Alessio & Scarponi, Giordano Emrys & Cozzani, Valerio & Demichela, Micaela, 2024. "Vulnerability Assessment of Industrial Sites to Interface Fires and Wildfires," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
- Ding, Long & Khan, Faisal & Ji, Jie, 2020. "A novel approach for domino effects modeling and risk analysis based on synergistic effect and accident evidence," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
More about this item
Keywords
Wildland-industrial interface; Wildfire; NaTech accident; Dynamic Bayesian network; Fire's most probable path; Domino effect;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:189:y:2019:i:c:p:165-176. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.