IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v212y2021ics0951832021001289.html
   My bibliography  Save this article

Optimal firefighting to prevent domino effects: Methodologies based on dynamic influence diagram and mathematical programming

Author

Listed:
  • Khakzad, Nima

Abstract

Fire is one of the most costly accidents in process plants due to the inflicted damage and the required firefighting resources. If the firefighting resources are sufficient, firefighting will include the suppression and cooling of all the burning units and exposed units, respectively. However, when the resources are inadequate, optimal firefighting strategies to answer “which burning units to suppress first and which exposed units to cool first?†would be essential to delay the fire spread until more resources become available.

Suggested Citation

  • Khakzad, Nima, 2021. "Optimal firefighting to prevent domino effects: Methodologies based on dynamic influence diagram and mathematical programming," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
  • Handle: RePEc:eee:reensy:v:212:y:2021:i:c:s0951832021001289
    DOI: 10.1016/j.ress.2021.107577
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832021001289
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2021.107577?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nima Khakzad & Faisal Khan & Paul Amyotte & Valerio Cozzani, 2013. "Domino Effect Analysis Using Bayesian Networks," Risk Analysis, John Wiley & Sons, vol. 33(2), pages 292-306, February.
    2. Minas, James P. & Hearne, John W. & Martell, David L., 2014. "A spatial optimisation model for multi-period landscape level fuel management to mitigate wildfire impacts," European Journal of Operational Research, Elsevier, vol. 232(2), pages 412-422.
    3. Landucci, Gabriele & Argenti, Francesca & Tugnoli, Alessandro & Cozzani, Valerio, 2015. "Quantitative assessment of safety barrier performance in the prevention of domino scenarios triggered by fire," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 30-43.
    4. Khakzad, Nima & Landucci, Gabriele & Reniers, Genserik, 2017. "Application of dynamic Bayesian network to performance assessment of fire protection systems during domino effects," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 232-247.
    5. Khakzad, Nima & Landucci, Gabriele & Cozzani, Valerio & Reniers, Genserik & Pasman, Hans, 2018. "Cost-effective fire protection of chemical plants against domino effects," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 412-421.
    6. Schreuder, J. A. M., 1981. "Application of a location model to fire stations in Rotterdam," European Journal of Operational Research, Elsevier, vol. 6(2), pages 212-219, February.
    7. Smith, J. Q., 1989. "Influence diagrams for Bayesian decision analysis," European Journal of Operational Research, Elsevier, vol. 40(3), pages 363-376, June.
    8. Dimopoulou, Maria & Giannikos, Ioannis, 2004. "Towards an integrated framework for forest fire control," European Journal of Operational Research, Elsevier, vol. 152(2), pages 476-486, January.
    9. Zhou, Jianfeng & Reniers, Genserik & Khakzad, Nima, 2016. "Application of event sequence diagram to evaluate emergency response actions during fire-induced domino effects," Reliability Engineering and System Safety, Elsevier, vol. 150(C), pages 202-209.
    10. Forell, Burkhard & Peschke, Jörg & Einarsson, Svante & Röwekamp, Marina, 2016. "Technical reliability of active fire protection features – generic database derived from German nuclear power plants," Reliability Engineering and System Safety, Elsevier, vol. 145(C), pages 277-286.
    11. Shenoy, Prakash P., 1994. "A comparison of graphical techniques for decision analysis," European Journal of Operational Research, Elsevier, vol. 78(1), pages 1-21, October.
    12. Khakzad, Nima, 2015. "Application of dynamic Bayesian network to risk analysis of domino effects in chemical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 263-272.
    13. Yang, Lili & Jones, Bryan F. & Yang, Shuang-Hua, 2007. "A fuzzy multi-objective programming for optimization of fire station locations through genetic algorithms," European Journal of Operational Research, Elsevier, vol. 181(2), pages 903-915, September.
    14. Janssens, Jochen & Talarico, Luca & Reniers, Genserik & Sörensen, Kenneth, 2015. "A decision model to allocate protective safety barriers and mitigate domino effects," Reliability Engineering and System Safety, Elsevier, vol. 143(C), pages 44-52.
    15. Nima Khakzad & Gabriele Landucci & Genserik Reniers, 2017. "Application of Graph Theory to Cost‐Effective Fire Protection of Chemical Plants During Domino Effects," Risk Analysis, John Wiley & Sons, vol. 37(9), pages 1652-1667, September.
    16. Hanif D. Sherali & Jitamitra Desai & Theodore S. Glickman, 2008. "Optimal Allocation of Risk-Reduction Resources in Event Trees," Management Science, INFORMS, vol. 54(7), pages 1313-1321, July.
    17. Nima Khakzad, 2018. "Which Fire to Extinguish First? A Risk‐Informed Approach to Emergency Response in Oil Terminals," Risk Analysis, John Wiley & Sons, vol. 38(7), pages 1444-1454, July.
    18. Bielza, Concha & Gómez, Manuel & Shenoy, Prakash P., 2011. "A review of representation issues and modeling challenges with influence diagrams," Omega, Elsevier, vol. 39(3), pages 227-241, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    2. Zeng, Tao & Wei, Lijun & Reniers, Genserik & Chen, Guohua, 2024. "A comprehensive study for probability prediction of domino effects considering synergistic effects," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    3. Khakzad, Nima, 2023. "A goal programming approach to multi-objective optimization of firefighting strategies in the event of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 239(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Guo, Xiaoxue & Ding, Long & Ji, Jie & Cozzani, Valerio, 2022. "A cost-effective optimization model of safety investment allocation for risk reduction of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    2. Khakzad, Nima, 2023. "A goal programming approach to multi-objective optimization of firefighting strategies in the event of domino effects," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    3. Khakzad, Nima, 2023. "A methodology based on Dijkstra's algorithm and mathematical programming for optimal evacuation in process plants in the event of major tank fires," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    4. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of risk modification due to safety barrier performance degradation in Natech events," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    5. Ovidi, Federica & Zhang, Laobing & Landucci, Gabriele & Reniers, Genserik, 2021. "Agent-based model and simulation of mitigated domino scenarios in chemical tank farms," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    6. Chen, Chao & Yang, Ming & Reniers, Genserik, 2021. "A dynamic stochastic methodology for quantifying HAZMAT storage resilience," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Zhou, Jianfeng & Reniers, Genserik, 2020. "Probabilistic Petri-net addition enabling decision making depending on situational change: The case of emergency response to fuel tank farm fire," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    8. Martin Folch-Calvo & Francisco Brocal-Fernández & Cristina González-Gaya & Miguel A. Sebastián, 2020. "Analysis and Characterization of Risk Methodologies Applied to Industrial Parks," Sustainability, MDPI, vol. 12(18), pages 1-35, September.
    9. Ding, Long & Khan, Faisal & Ji, Jie, 2022. "A novel vulnerability model considering synergistic effect of fire and overpressure in chemical processing facilities," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    10. Zeng, Tao & Wei, Lijun & Reniers, Genserik & Chen, Guohua, 2024. "A comprehensive study for probability prediction of domino effects considering synergistic effects," Reliability Engineering and System Safety, Elsevier, vol. 251(C).
    11. Khakzad, Nima & Reniers, Genserik, 2019. "Low-capacity utilization of process plants: A cost-robust approach to tackle man-made domino effects," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    12. Nima Khakzad, 2018. "Which Fire to Extinguish First? A Risk‐Informed Approach to Emergency Response in Oil Terminals," Risk Analysis, John Wiley & Sons, vol. 38(7), pages 1444-1454, July.
    13. Nima Khakzad & Gabriele Landucci & Genserik Reniers, 2017. "Application of Graph Theory to Cost‐Effective Fire Protection of Chemical Plants During Domino Effects," Risk Analysis, John Wiley & Sons, vol. 37(9), pages 1652-1667, September.
    14. Khakzad, Nima & Landucci, Gabriele & Reniers, Genserik, 2017. "Application of dynamic Bayesian network to performance assessment of fire protection systems during domino effects," Reliability Engineering and System Safety, Elsevier, vol. 167(C), pages 232-247.
    15. Misuri, Alessio & Landucci, Gabriele & Cozzani, Valerio, 2021. "Assessment of safety barrier performance in the mitigation of domino scenarios caused by Natech events," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    16. Lin Xie & Mary Ann Lundteigen & Yiliu Liu, 2020. "Reliability and barrier assessment of series–parallel systems subject to cascading failures," Journal of Risk and Reliability, , vol. 234(3), pages 455-469, June.
    17. Weiliang Qiao & Enze Huang & Hongtongyang Guo & Yang Liu & Xiaoxue Ma, 2022. "Barriers Involved in the Safety Management Systems: A Systematic Review of Literature," IJERPH, MDPI, vol. 19(15), pages 1-35, August.
    18. Hou, Lei & Wu, Xingguang & Wu, Zhuang & Wu, Shouzhi, 2020. "Pattern identification and risk prediction of domino effect based on data mining methods for accidents occurred in the tank farm," Reliability Engineering and System Safety, Elsevier, vol. 193(C).
    19. Laobing Zhang & Gabriele Landucci & Genserik Reniers & Nima Khakzad & Jianfeng Zhou, 2018. "DAMS: A Model to Assess Domino Effects by Using Agent‐Based Modeling and Simulation," Risk Analysis, John Wiley & Sons, vol. 38(8), pages 1585-1600, August.
    20. Singh, Kritika & Maiti, J, 2020. "A novel data mining approach for analysis of accident paths and performance assessment of risk control systems," Reliability Engineering and System Safety, Elsevier, vol. 202(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:212:y:2021:i:c:s0951832021001289. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.