IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v140y2015icp99-106.html
   My bibliography  Save this article

Bootstrap method for characterizing the effect of uncertainty in shear strength parameters on slope reliability

Author

Listed:
  • Li, Dian-Qing
  • Tang, Xiao-Song
  • Phoon, Kok-Kwang

Abstract

This paper aims to propose a bootstrap method for characterizing the effect of uncertainty in shear strength parameters on slope reliability. The procedure for a traditional slope reliability analysis with fixed distributions of shear strength parameters is presented first. Then, the variations of the mean and standard deviation of shear strength parameters and the Akaike Information Criterion values associated with various distributions are studied to characterize the uncertainties in distribution parameters and types of shear strength parameters. The reliability of an infinite slope is presented to demonstrate the validity of the proposed method. The results indicate that the bootstrap method can effectively model the uncertain probability distributions of shear strength parameters. The uncertain distributions of shear strength parameters have a significant influence on slope reliability. With the bootstrap method, the slope reliability index is represented by a confidence interval instead of a single fixed index. The confidence interval increases with increasing factor of slope safety. Considering both the uncertainties in distribution parameters and distribution types of shear strength parameters leads to a higher variation and a wider confidence interval of reliability index.

Suggested Citation

  • Li, Dian-Qing & Tang, Xiao-Song & Phoon, Kok-Kwang, 2015. "Bootstrap method for characterizing the effect of uncertainty in shear strength parameters on slope reliability," Reliability Engineering and System Safety, Elsevier, vol. 140(C), pages 99-106.
  • Handle: RePEc:eee:reensy:v:140:y:2015:i:c:p:99-106
    DOI: 10.1016/j.ress.2015.03.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832015001003
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2015.03.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wai Mun Fong, 2013. "Time diversification under loss aversion: a bootstrap analysis," Applied Economics, Taylor & Francis Journals, vol. 45(5), pages 605-610, February.
    2. Sentz, Kari & Ferson, Scott, 2011. "Probabilistic bounding analysis in the Quantification of Margins and Uncertainties," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1126-1136.
    3. Huard, David & Evin, Guillaume & Favre, Anne-Catherine, 2006. "Bayesian copula selection," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 809-822, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Ruijing & Dai, Hongzhe, 2022. "A non-Gaussian stochastic model from limited observations using polynomial chaos and fractional moments," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    2. Tonghui Wei & Wenjie Zuo & Hongwei Zheng & Feng Li, 2021. "Slope hybrid reliability analysis considering the uncertainty of probability-interval using three-parameter Weibull distribution," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 105(1), pages 565-586, January.
    3. Ding, Jiayi & Zhou, Jianfang & Cai, Wei, 2023. "An efficient variable selection-based Kriging model method for the reliability analysis of slopes with spatially variable soils," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    4. Lan, Meng & Zhu, Jiping & Lo, Siuming, 2021. "Hybrid Bayesian network-based landslide risk assessment method for modeling risk for industrial facilities subjected to landslides," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Luo, Changqi & Zhu, Shun-Peng & Keshtegar, Behrooz & Niu, Xiaopeng & Taylan, Osman, 2023. "An enhanced uniform simulation approach coupled with SVR for efficient structural reliability analysis," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    6. Zhao, Tengyuan & Wang, Yu, 2020. "Non-parametric simulation of non-stationary non-gaussian 3D random field samples directly from sparse measurements using signal decomposition and Markov Chain Monte Carlo (MCMC) simulation," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    7. Liu, Fuchao & Wei, Pengfei & Tang, Chenghu & Wang, Pan & Yue, Zhufeng, 2019. "Global sensitivity analysis for multivariate outputs based on multiple response Gaussian process model," Reliability Engineering and System Safety, Elsevier, vol. 189(C), pages 287-298.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhiwei Bai & Hongkui Wei & Yingying Xiao & Shufang Song & Sergei Kucherenko, 2021. "A Vine Copula-Based Global Sensitivity Analysis Method for Structures with Multidimensional Dependent Variables," Mathematics, MDPI, vol. 9(19), pages 1-20, October.
    2. Xun Lu & Kin Lai & Liang Liang, 2014. "Portfolio value-at-risk estimation in energy futures markets with time-varying copula-GARCH model," Annals of Operations Research, Springer, vol. 219(1), pages 333-357, August.
    3. Pasanisi, Alberto & Fu, Shuai & Bousquet, Nicolas, 2012. "Estimating discrete Markov models from various incomplete data schemes," Computational Statistics & Data Analysis, Elsevier, vol. 56(9), pages 2609-2625.
    4. Fantazzini, Dean, 2010. "Three-stage semi-parametric estimation of T-copulas: Asymptotics, finite-sample properties and computational aspects," Computational Statistics & Data Analysis, Elsevier, vol. 54(11), pages 2562-2579, November.
    5. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Property values associated with the failure of individual links in a system with multiple weak and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    6. Jean-David Fermanian, 2012. "An overview of the goodness-of-fit test problem for copulas," Papers 1211.4416, arXiv.org.
    7. Hirofumi Michimae & Takeshi Emura, 2022. "Bayesian ridge estimators based on copula-based joint prior distributions for regression coefficients," Computational Statistics, Springer, vol. 37(5), pages 2741-2769, November.
    8. Roch, Oriol & Alegre, Antonio, 2006. "Testing the bivariate distribution of daily equity returns using copulas. An application to the Spanish stock market," Computational Statistics & Data Analysis, Elsevier, vol. 51(2), pages 1312-1329, November.
    9. Grundke, Peter & Polle, Simone, 2012. "Crisis and risk dependencies," European Journal of Operational Research, Elsevier, vol. 223(2), pages 518-528.
    10. Shah, Harsheel & Hosder, Serhat & Winter, Tyler, 2015. "Quantification of margins and mixed uncertainties using evidence theory and stochastic expansions," Reliability Engineering and System Safety, Elsevier, vol. 138(C), pages 59-72.
    11. Qu, Xiaomei & Zhou, Jie & Shen, Xiaojing, 2010. "Archimedean copula estimation and model selection via l1-norm symmetric distribution," Insurance: Mathematics and Economics, Elsevier, vol. 46(2), pages 406-414, April.
    12. Ulf Schepsmeier & Jakob Stöber, 2014. "Derivatives and Fisher information of bivariate copulas," Statistical Papers, Springer, vol. 55(2), pages 525-542, May.
    13. Dalla Valle Luciana, 2016. "The Use of Official Statistics in Self-Selection Bias Modeling," Journal of Official Statistics, Sciendo, vol. 32(4), pages 887-905, December.
    14. Xi, Zhimin & Jing, Rong & Wang, Pingfeng & Hu, Chao, 2014. "A copula-based sampling method for data-driven prognostics," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 72-82.
    15. Gregor Weiß, 2011. "Copula parameter estimation by maximum-likelihood and minimum-distance estimators: a simulation study," Computational Statistics, Springer, vol. 26(1), pages 31-54, March.
    16. Zeng, Zhiguo & Barros, Anne & Coit, David, 2023. "Dependent failure behavior modeling for risk and reliability: A systematic and critical literature review," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    17. Xu Chen & Surya T. Tokdar, 2021. "Joint quantile regression for spatial data," Journal of the Royal Statistical Society Series B, Royal Statistical Society, vol. 83(4), pages 826-852, September.
    18. Flage, Roger & Aven, Terje & Berner, Christine L., 2018. "A comparison between a probability bounds analysis and a subjective probability approach to express epistemic uncertainties in a risk assessment context – A simple illustrative example," Reliability Engineering and System Safety, Elsevier, vol. 169(C), pages 1-10.
    19. Helton, Jon C. & Brooks, Dusty M. & Sallaberry, Cédric J., 2020. "Margins associated with loss of assured safety for systems with multiple weak links and strong links," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    20. Sarazin, Gabriel & Morio, Jérôme & Lagnoux, Agnès & Balesdent, Mathieu & Brevault, Loïc, 2021. "Reliability-oriented sensitivity analysis in presence of data-driven epistemic uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 215(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:140:y:2015:i:c:p:99-106. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.