IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v95y2010i4p412-425.html
   My bibliography  Save this article

Improved reliability modeling using Bayesian networks and dynamic discretization

Author

Listed:
  • Marquez, David
  • Neil, Martin
  • Fenton, Norman

Abstract

This paper shows how recent Bayesian network (BN) algorithms can be used to model time to failure distributions and perform reliability analysis of complex systems in a simple unified way. The algorithms work for so-called hybrid BNs, which are BNs that can contain a mixture of both discrete and continuous variables. Our BN approach extends fault trees by defining the time-to-failure of the fault tree constructs as deterministic functions of the corresponding input components’ time-to-failure. This helps solve any configuration of static and dynamic gates with general time-to-failure distributions. Unlike other approaches (which tend to be restricted to using exponential failure distributions) our approach can use any parametric or empirical distribution for the time-to-failure of the system components. We demonstrate that the approach produces results equivalent to the state of the practice and art for small examples; more importantly our approach produces solutions hitherto unobtainable for more complex examples, involving non-standard assumptions.. The approach offers a powerful framework for analysts and decision makers to successfully perform robust reliability assessment. Sensitivity, uncertainty, diagnosis analysis, common cause failures and warranty analysis can also be easily performed within this framework.

Suggested Citation

  • Marquez, David & Neil, Martin & Fenton, Norman, 2010. "Improved reliability modeling using Bayesian networks and dynamic discretization," Reliability Engineering and System Safety, Elsevier, vol. 95(4), pages 412-425.
  • Handle: RePEc:eee:reensy:v:95:y:2010:i:4:p:412-425
    DOI: 10.1016/j.ress.2009.11.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832009002646
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2009.11.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Langseth, Helge & Nielsen, Thomas D. & Rumí, Rafael & Salmerón, Antonio, 2009. "Inference in hybrid Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 94(10), pages 1499-1509.
    2. Neil, Martin & Tailor, Manesh & Marquez, David & Fenton, Norman & Hearty, Peter, 2008. "Modelling dependable systems using hybrid Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 93(7), pages 933-939.
    3. N Fenton & M Neil & D Marquez, 2008. "Using Bayesian networks to predict software defects and reliability," Journal of Risk and Reliability, , vol. 222(4), pages 701-712, December.
    4. Langseth, Helge & Portinale, Luigi, 2007. "Bayesian networks in reliability," Reliability Engineering and System Safety, Elsevier, vol. 92(1), pages 92-108.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhong, X. & Ichchou, M. & Saidi, A., 2010. "Reliability assessment of complex mechatronic systems using a modified nonparametric belief propagation algorithm," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1174-1185.
    2. Yan-Feng Li & Jinhua Mi & Yu Liu & Yuan-Jian Yang & Hong-Zhong Huang, 2015. "Dynamic fault tree analysis based on continuous-time Bayesian networks under fuzzy numbers," Journal of Risk and Reliability, , vol. 229(6), pages 530-541, December.
    3. Morales-Nápoles, Oswaldo & Steenbergen, Raphaël D.J.M., 2014. "Analysis of axle and vehicle load properties through Bayesian Networks based on Weigh-in-Motion data," Reliability Engineering and System Safety, Elsevier, vol. 125(C), pages 153-164.
    4. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C. & Ariffin, A.K. & Singh, S.S., 2021. "Evidence based risk analysis of fire and explosion accident scenarios in FPSOs," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Zwirglmaier, Kilian & Straub, Daniel, 2016. "A discretization procedure for rare events in Bayesian networks," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 96-109.
    6. Wu, Bing & Tang, Yuheng & Yan, Xinping & Guedes Soares, Carlos, 2021. "Bayesian Network modelling for safety management of electric vehicles transported in RoPax ships," Reliability Engineering and System Safety, Elsevier, vol. 209(C).
    7. Bhardwaj, U. & Teixeira, A.P. & Guedes Soares, C., 2022. "Bayesian framework for reliability prediction of subsea processing systems accounting for influencing factors uncertainty," Reliability Engineering and System Safety, Elsevier, vol. 218(PA).
    8. Pan, Yue & Ou, Shenwei & Zhang, Limao & Zhang, Wenjing & Wu, Xianguo & Li, Heng, 2019. "Modeling risks in dependent systems: A Copula-Bayesian approach," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 416-431.
    9. Rogerson, Ellen C. & Lambert, James H., 2012. "Prioritizing risks via several expert perspectives with application to runway safety," Reliability Engineering and System Safety, Elsevier, vol. 103(C), pages 22-34.
    10. Ibsen Chivatá Cárdenas & Saad S.H. Al‐Jibouri & Johannes I.M. Halman & Frits A. van Tol, 2014. "Modeling Risk‐Related Knowledge in Tunneling Projects," Risk Analysis, John Wiley & Sons, vol. 34(2), pages 323-339, February.
    11. George-Williams, Hindolo & Patelli, Edoardo, 2017. "Efficient availability assessment of reconfigurable multi-state systems with interdependencies," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 431-444.
    12. Vimal Vijayan & Sanjay K Chaturvedi, 2021. "Multi-component maintenance grouping optimization based on stochastic dependency," Journal of Risk and Reliability, , vol. 235(2), pages 293-305, April.
    13. Wang, Fan & Li, Heng & Dong, Chao & Ding, Lieyun, 2019. "Knowledge representation using non-parametric Bayesian networks for tunneling risk analysis," Reliability Engineering and System Safety, Elsevier, vol. 191(C).
    14. Vimal Vijayan & Sanjay K Chaturvedi & Ritesh Chandra, 2020. "A failure interaction model for multicomponent repairable systems," Journal of Risk and Reliability, , vol. 234(3), pages 470-486, June.
    15. Michail Cheliotis & Evangelos Boulougouris & Nikoletta L Trivyza & Gerasimos Theotokatos & George Livanos & George Mantalos & Athanasios Stubos & Emmanuel Stamatakis & Alexandros Venetsanos, 2021. "Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry," Energies, MDPI, vol. 14(11), pages 1-20, May.
    16. Babaleye, Ahmed O. & Kurt, Rafet Emek & Khan, Faisal, 2019. "Safety analysis of plugging and abandonment of oil and gas wells in uncertain conditions with limited data," Reliability Engineering and System Safety, Elsevier, vol. 188(C), pages 133-141.
    17. Bensi, Michelle & Kiureghian, Armen Der & Straub, Daniel, 2013. "Efficient Bayesian network modeling of systems," Reliability Engineering and System Safety, Elsevier, vol. 112(C), pages 200-213.
    18. Ait Mokhtar, El Hassene & Laggoune, Radouane & Chateauneuf, Alaa, 2023. "Imperfect maintenance modeling and assessment of repairable multi-component systems," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    19. Wallstrom, Timothy C., 2011. "Quantification of margins and uncertainties: A probabilistic framework," Reliability Engineering and System Safety, Elsevier, vol. 96(9), pages 1053-1062.
    20. Iamsumang, Chonlagarn & Mosleh, Ali & Modarres, Mohammad, 2018. "Monitoring and learning algorithms for dynamic hybrid Bayesian network in on-line system health management applications," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 118-129.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:95:y:2010:i:4:p:412-425. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.