IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v311y2022i1d10.1007_s10479-019-03228-9.html
   My bibliography  Save this article

Maintenance modeling and operation parameters optimization for complex production line under reliability constraints

Author

Listed:
  • Hongming Zhou

    (Wenzhou University)

  • Sufen Wang

    (Wenzhou University)

  • Faqun Qi

    (Wenzhou University)

  • Shun Gao

    (Wenzhou University)

Abstract

An optimal preventive maintenance policy and optimization method of operation parameters for a production line consisting of multiple execution units is described herein. According to the characteristics of the production unit, the relationship between the reliability and operating parameters of the execution unit is established, as well as its relationship between the operating parameters and maintenance cost. The minimum maintenance cost and effective operating speed is selected as the objective, and the optimal parameters are derived by heuristic algorithm. Finally, a numerical example and simulation experiments are shown which validated the effectiveness of the proposed method.

Suggested Citation

  • Hongming Zhou & Sufen Wang & Faqun Qi & Shun Gao, 2022. "Maintenance modeling and operation parameters optimization for complex production line under reliability constraints," Annals of Operations Research, Springer, vol. 311(1), pages 507-523, April.
  • Handle: RePEc:spr:annopr:v:311:y:2022:i:1:d:10.1007_s10479-019-03228-9
    DOI: 10.1007/s10479-019-03228-9
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-019-03228-9
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-019-03228-9?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Yu & Chen, Yiming & Jiang, Tao, 2018. "On sequence planning for selective maintenance of multi-state systems under stochastic maintenance durations," European Journal of Operational Research, Elsevier, vol. 268(1), pages 113-127.
    2. Fitouhi, Mohamed-Chahir & Nourelfath, Mustapha, 2014. "Integrating noncyclical preventive maintenance scheduling and production planning for multi-state systems," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 175-186.
    3. Zhou, Xiaojun & Huang, Kaimin & Xi, Lifeng & Lee, Jay, 2015. "Preventive maintenance modeling for multi-component systems with considering stochastic failures and disassembly sequence," Reliability Engineering and System Safety, Elsevier, vol. 142(C), pages 231-237.
    4. Lu, Biao & Zhou, Xiaojun, 2017. "Opportunistic preventive maintenance scheduling for serial-parallel multistage manufacturing systems with multiple streams of deterioration," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 116-127.
    5. Lin, Jing & Pulido, Julio & Asplund, Matthias, 2015. "Reliability analysis for preventive maintenance based on classical and Bayesian semi-parametric degradation approaches using locomotive wheel-sets as a case study," Reliability Engineering and System Safety, Elsevier, vol. 134(C), pages 143-156.
    6. Xiao, Lei & Song, Sanling & Chen, Xiaohui & Coit, David W., 2016. "Joint optimization of production scheduling and machine group preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 68-78.
    7. Samira Taleb & Amar Aissani, 2016. "Preventive maintenance in an unreliable M/G/1 retrial queue with persistent and impatient customers," Annals of Operations Research, Springer, vol. 247(1), pages 291-317, December.
    8. Chen, Hung-Cheng, 2013. "Optimum capacity determination of stand-alone hybrid generation system considering cost and reliability," Applied Energy, Elsevier, vol. 103(C), pages 155-164.
    9. Hong, H.P. & Zhou, W. & Zhang, S. & Ye, W., 2014. "Optimal condition-based maintenance decisions for systems with dependent stochastic degradation of components," Reliability Engineering and System Safety, Elsevier, vol. 121(C), pages 276-288.
    10. Belyi, Dmitriy & Popova, Elmira & Morton, David P. & Damien, Paul, 2017. "Bayesian failure-rate modeling and preventive maintenance optimization," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1085-1093.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    2. Zhang, Chengjie & Qi, Faqun & Zhang, Ning & Li, Yong & Huang, Hongzhong, 2022. "Maintenance policy optimization for multi-component systems considering dynamic importance of components," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    3. Feng, Hanxin & Xi, Lifeng & Xiao, Lei & Xia, Tangbin & Pan, Ershun, 2018. "Imperfect preventive maintenance optimization for flexible flowshop manufacturing cells considering sequence-dependent group scheduling," Reliability Engineering and System Safety, Elsevier, vol. 176(C), pages 218-229.
    4. Zhou, Xiaojun & Shi, Kailong, 2019. "Capacity failure rate based opportunistic maintenance modeling for series-parallel multi-station manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 46-53.
    5. Jiang, Junwei & An, Youjun & Dong, Yuanfa & Hu, Jiawen & Li, Yinghe & Zhao, Ziye, 2023. "Integrated optimization of non-permutation flow shop scheduling and maintenance planning with variable processing speed," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Zhou, Xiaojun & Ning, Xiaohan, 2021. "Maintenance gravity window based opportunistic maintenance scheduling for multi-unit serial systems with stochastic production waits," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    7. Zhu, Wenjin & Fouladirad, Mitra & Bérenguer, Christophe, 2016. "A multi-level maintenance policy for a multi-component and multifailure mode system with two independent failure modes," Reliability Engineering and System Safety, Elsevier, vol. 153(C), pages 50-63.
    8. Azizi, Fariba & Salari, Nooshin, 2023. "A novel condition-based maintenance framework for parallel manufacturing systems based on bivariate birth/birth–death processes," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    9. Chen, Yiming & Liu, Yu & Jiang, Tao, 2021. "Optimal maintenance strategy for multi-state systems with single maintenance capacity and arbitrarily distributed maintenance time," Reliability Engineering and System Safety, Elsevier, vol. 211(C).
    10. Yang, Hongbing & Li, Wenchao & Wang, Bin, 2021. "Joint optimization of preventive maintenance and production scheduling for multi-state production systems based on reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    11. Zhou, Xiaojun & Yu, Mengqi, 2020. "Semi-dynamic maintenance scheduling for multi-station series systems in multi-specification and small-batch production," Reliability Engineering and System Safety, Elsevier, vol. 195(C).
    12. Wu, Tianyi & Yang, Li & Ma, Xiaobing & Zhang, Zihan & Zhao, Yu, 2020. "Dynamic maintenance strategy with iteratively updated group information," Reliability Engineering and System Safety, Elsevier, vol. 197(C).
    13. Edson Ruschel & Eduardo Alves Portela Santos & Eduardo de Freitas Rocha Loures, 2020. "Establishment of maintenance inspection intervals: an application of process mining techniques in manufacturing," Journal of Intelligent Manufacturing, Springer, vol. 31(1), pages 53-72, January.
    14. Liu, Yu & Zhang, Qin & Ouyang, Zhiyuan & Huang, Hong-Zhong, 2021. "Integrated production planning and preventive maintenance scheduling for synchronized parallel machines," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    15. Xiufang Zhang & Tangbin Xia & Ershun Pan & Yuqing Li, 2022. "Integrated optimization on production scheduling and imperfect preventive maintenance considering multi-degradation and learning-forgetting effects," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 451-482, June.
    16. Xia, Tangbin & Dong, Yifan & Xiao, Lei & Du, Shichang & Pan, Ershun & Xi, Lifeng, 2018. "Recent advances in prognostics and health management for advanced manufacturing paradigms," Reliability Engineering and System Safety, Elsevier, vol. 178(C), pages 255-268.
    17. Feras Alasali & Mohammad Salameh & Ali Semrin & Khaled Nusair & Naser El-Naily & William Holderbaum, 2022. "Optimal Controllers and Configurations of 100% PV and Energy Storage Systems for a Microgrid: The Case Study of a Small Town in Jordan," Sustainability, MDPI, vol. 14(13), pages 1-20, July.
    18. Zhou, Chongwen & Chinnam, Ratna Babu & Dalkiran, Evrim & Korostelev, Alexander, 2017. "Bayesian approach to hazard rate models for early detection of warranty and reliability problems using upstream supply chain information," International Journal of Production Economics, Elsevier, vol. 193(C), pages 316-331.
    19. Lin, Chen & Xiao, Hui & Kou, Gang & Peng, Rui, 2020. "Defending a series system with individual protection, overarching protection, and disinformation," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    20. KarabaÄŸ, Oktay & Eruguz, Ayse Sena & Basten, Rob, 2020. "Integrated optimization of maintenance interventions and spare part selection for a partially observable multi-component system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:311:y:2022:i:1:d:10.1007_s10479-019-03228-9. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.