IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v230y2023ics095183202200521x.html
   My bibliography  Save this article

Analysis of a production line subject to degradation and preventive maintenance

Author

Listed:
  • Wei, Shuaichong
  • Nourelfath, Mustapha
  • Nahas, Nabil

Abstract

This paper considers a continuous flow manufacturing system with two machines subjected to condition-based preventive maintenance, and separated by an intermediate buffer of finite capacity. Each machine can degrade into several discrete states characterized by different degradation levels and performance parameters, ranging from perfect functioning to complete failure. Unlike the existing literature, the proposed approach considers various side effect costs, including the cost related to quality deterioration. A methodology is developed to describe the degradation stochastic process, and to analyze the complex trade-off between the condition-based preventive maintenance and the buffer capacity. The obtained results show the importance of considering quality-related and other possible costs when selecting preventive maintenance policy to optimize the performance of the manufacturing system. It is also shown that the selection of preventive maintenance actions should be considered from the view of the whole system, rather than individual machines. The optimal solution depends on the different degradation levels of the upstream and downstream machines.

Suggested Citation

  • Wei, Shuaichong & Nourelfath, Mustapha & Nahas, Nabil, 2023. "Analysis of a production line subject to degradation and preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
  • Handle: RePEc:eee:reensy:v:230:y:2023:i:c:s095183202200521x
    DOI: 10.1016/j.ress.2022.108906
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S095183202200521X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2022.108906?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zhang, Ning & Qi, Faqun & Zhang, Chengjie & Zhou, Hongming, 2022. "Joint optimization of condition-based maintenance policy and buffer capacity for a two-unit series system," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    2. Pham, Hoang & Wang, Hongzhou, 1996. "Imperfect maintenance," European Journal of Operational Research, Elsevier, vol. 94(3), pages 425-438, November.
    3. Yunyi Kang & Feng Ju, 2019. "Integrated analysis of productivity and machine condition degradation: Performance evaluation and bottleneck identification," IISE Transactions, Taylor & Francis Journals, vol. 51(5), pages 501-516, May.
    4. Zhou, Xiaojun & Ning, Xiaohan, 2021. "Maintenance gravity window based opportunistic maintenance scheduling for multi-unit serial systems with stochastic production waits," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Nabil Nahas, 2017. "Buffer allocation and preventive maintenance optimization in unreliable production lines," Journal of Intelligent Manufacturing, Springer, vol. 28(1), pages 85-93, January.
    6. Fitouhi, Mohamed-Chahir & Nourelfath, Mustapha & Gershwin, Stanley B., 2017. "Performance evaluation of a two-machine line with a finite buffer and condition-based maintenance," Reliability Engineering and System Safety, Elsevier, vol. 166(C), pages 61-72.
    7. An, Youjun & Chen, Xiaohui & Hu, Jiawen & Zhang, Lin & Li, Yinghe & Jiang, Junwei, 2022. "Joint optimization of preventive maintenance and production rescheduling with new machine insertion and processing speed selection," Reliability Engineering and System Safety, Elsevier, vol. 220(C).
    8. Stanley Gershwin & James Schor, 2000. "Efficient algorithms for buffer space allocation," Annals of Operations Research, Springer, vol. 93(1), pages 117-144, January.
    9. Fakher, Hossein Beheshti & Nourelfath, Mustapha & Gendreau, Michel, 2018. "Integrating production, maintenance and quality: A multi-period multi-product profit-maximization model," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 191-201.
    10. Yunyi Kang & Feng Ju, 2019. "Flexible preventative maintenance for serial production lines with multi-stage degrading machines and finite buffers," IISE Transactions, Taylor & Francis Journals, vol. 51(7), pages 777-791, July.
    11. Gao, Shan & Wang, Jinting, 2021. "Reliability and availability analysis of a retrial system with mixed standbys and an unreliable repair facility," Reliability Engineering and System Safety, Elsevier, vol. 205(C).
    12. Azimpoor, Samareh & Taghipour, Sharareh, 2021. "Joint inspection and product quality optimization for a system with delayed failure," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    13. Ye, Zhenggeng & Yang, Hui & Cai, Zhiqiang & Si, Shubin & Zhou, Fuli, 2021. "Performance evaluation of serial-parallel manufacturing systems based on the impact of heterogeneous feedstocks on machine degradation," Reliability Engineering and System Safety, Elsevier, vol. 207(C).
    14. Jianjun Shi & Shiyu Zhou, 2009. "Quality control and improvement for multistage systems: A survey," IISE Transactions, Taylor & Francis Journals, vol. 41(9), pages 744-753.
    15. Muller, Alexandre & Crespo Marquez, Adolfo & Iung, Benoît, 2008. "On the concept of e-maintenance: Review and current research," Reliability Engineering and System Safety, Elsevier, vol. 93(8), pages 1165-1187.
    16. Belmansour, Ahmed-Tidjani & Nourelfath, Mustapha, 2010. "An aggregation method for performance evaluation of a tandem homogenous production line with machines having multiple failure modes," Reliability Engineering and System Safety, Elsevier, vol. 95(11), pages 1193-1201.
    17. Tan, BarIs & Gershwin, Stanley B., 2009. "Analysis of a general Markovian two-stage continuous-flow production system with a finite buffer," International Journal of Production Economics, Elsevier, vol. 120(2), pages 327-339, August.
    18. Bouslah, Bassem & Gharbi, Ali & Pellerin, Robert, 2018. "Joint production, quality and maintenance control of a two-machine line subject to operation-dependent and quality-dependent failures," International Journal of Production Economics, Elsevier, vol. 195(C), pages 210-226.
    19. Cheng, Guoqing & Li, Ling, 2020. "Joint optimization of production, quality control and maintenance for serial-parallel multistage production systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    20. Xiao Wang & Hongwei Wang & Chao Qi, 2016. "Multi-agent reinforcement learning based maintenance policy for a resource constrained flow line system," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 325-333, April.
    21. Yang, Hongbing & Li, Wenchao & Wang, Bin, 2021. "Joint optimization of preventive maintenance and production scheduling for multi-state production systems based on reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    22. Zhou, Yifan & Li, Bangcheng & Lin, Tian Ran, 2022. "Maintenance optimisation of multicomponent systems using hierarchical coordinated reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    23. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    24. Nahas, Nabil & Ait-Kadi, Daoud & Nourelfath, Mustapha, 2006. "A new approach for buffer allocation in unreliable production lines," International Journal of Production Economics, Elsevier, vol. 103(2), pages 873-881, October.
    25. Nourelfath, Mustapha & Nahas, Nabil & Ben-Daya, Mohamed, 2016. "Integrated preventive maintenance and production decisions for imperfect processes," Reliability Engineering and System Safety, Elsevier, vol. 148(C), pages 21-31.
    26. Yongxin Cao & Velusamy Subramaniam, 2013. "Improving the performance of manufacturing systems with continuous sampling plans," IISE Transactions, Taylor & Francis Journals, vol. 45(6), pages 575-590.
    27. Tullio A.M. Tolio & Andrea Ratti, 2018. "Performance evaluation of two-machine lines with generalized thresholds," International Journal of Production Research, Taylor & Francis Journals, vol. 56(1-2), pages 926-949, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ye, Zhenggeng & Cai, Zhiqiang & Yang, Hui & Si, Shubin & Zhou, Fuli, 2023. "Joint optimization of maintenance and quality inspection for manufacturing networks based on deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 236(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tambe, Pravin P. & Kulkarni, Makarand S., 2022. "A reliability based integrated model of maintenance planning with quality control and production decision for improving operational performance," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Rasay, Hasan & Taghipour, Sharareh & Sharifi, Mani, 2022. "An integrated Maintenance and Statistical Process Control Model for a Deteriorating Production Process," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    3. Kim, Seokgoo & Choi, Joo-Ho & Kim, Nam Ho, 2022. "Inspection schedule for prognostics with uncertainty management," Reliability Engineering and System Safety, Elsevier, vol. 222(C).
    4. Azimpoor, Samareh & Taghipour, Sharareh, 2021. "Joint inspection and product quality optimization for a system with delayed failure," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    5. Boumallessa, Zeineb & Chouikhi, Houssam & Elleuch, Mounir & Bentaher, Hatem, 2023. "Modeling and optimizing the maintenance schedule using dynamic quality and machine condition monitors in an unreliable single production system," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    6. Barlow, E. & Bedford, T. & Revie, M. & Tan, J. & Walls, L., 2021. "A performance-centred approach to optimising maintenance of complex systems," European Journal of Operational Research, Elsevier, vol. 292(2), pages 579-595.
    7. Cruz, F.R.B. & Van Woensel, T. & Smith, J. MacGregor, 2010. "Buffer and throughput trade-offs in M/G/1/K queueing networks: A bi-criteria approach," International Journal of Production Economics, Elsevier, vol. 125(2), pages 224-234, June.
    8. Gan, Shuyuan & Hu, Hengheng & Coit, David W., 2023. "Maintenance optimization considering the mutual dependence of the environment and system with decreasing effects of imperfect maintenance," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    9. Zhang, Ning & Qi, Faqun & Zhang, Chengjie & Zhou, Hongming, 2022. "Joint optimization of condition-based maintenance policy and buffer capacity for a two-unit series system," Reliability Engineering and System Safety, Elsevier, vol. 219(C).
    10. Wang, Lin & Lu, Zhiqiang & Ren, Yifei, 2020. "Joint production control and maintenance policy for a serial system with quality deterioration and stochastic demand," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    11. Mohammadi, Reza & He, Qing, 2022. "A deep reinforcement learning approach for rail renewal and maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    12. Azimpoor, Samareh & Taghipour, Sharareh & Farmanesh, Babak & Sharifi, Mani, 2022. "Joint Planning of Production and Inspection of Parallel Machines with Two-phase of Failure," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    13. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    14. Zheng, Meimei & Su, Zhiyun & Wang, Dong & Pan, Ershun, 2024. "Joint maintenance and spare part ordering from multiple suppliers for multicomponent systems using a deep reinforcement learning algorithm," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    15. Azizi, Fariba & Salari, Nooshin, 2023. "A novel condition-based maintenance framework for parallel manufacturing systems based on bivariate birth/birth–death processes," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    16. Zhao, Xian & He, Zongda & Wu, Yaguang & Qiu, Qingan, 2022. "Joint optimization of condition-based performance control and maintenance policies for mission-critical systems," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    17. Jiang, Junwei & An, Youjun & Dong, Yuanfa & Hu, Jiawen & Li, Yinghe & Zhao, Ziye, 2023. "Integrated optimization of non-permutation flow shop scheduling and maintenance planning with variable processing speed," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    18. Cheng, Guoqing & Li, Ling, 2020. "Joint optimization of production, quality control and maintenance for serial-parallel multistage production systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    19. Yang, Hongbing & Li, Wenchao & Wang, Bin, 2021. "Joint optimization of preventive maintenance and production scheduling for multi-state production systems based on reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    20. Lin, Zu-Liang & Huang, Yeu-Shiang & Fang, Chih-Chiang, 2015. "Non-periodic preventive maintenance with reliability thresholds for complex repairable systems," Reliability Engineering and System Safety, Elsevier, vol. 136(C), pages 145-156.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:230:y:2023:i:c:s095183202200521x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.