IDEAS home Printed from https://ideas.repec.org/a/eee/reensy/v236y2023ics0951832023002053.html
   My bibliography  Save this article

Joint optimization of maintenance and quality inspection for manufacturing networks based on deep reinforcement learning

Author

Listed:
  • Ye, Zhenggeng
  • Cai, Zhiqiang
  • Yang, Hui
  • Si, Shubin
  • Zhou, Fuli

Abstract

Most existing studies on joint optimization of manufacturing systems (MS) focus on small-scale systems with simple structures, such as the single-machine, simple serial, or parallel MS. Simultaneously, traditional algorithms utilized in small-scale MS always show an insufficiency in solving large-scale dynamic MS with complex structures, such as manufacturing networks. Therefore, considering the effectiveness of reinforcement learning on the infinite-horizon Markov Decision Process (MDP), this paper presents a joint optimization problem of preventive maintenance and work-in-process quality inspection for manufacturing networks with reliability-quality interactions. First, dynamic reliability and quality models are proposed at the machine level to cope with complex interactions in manufacturing networks. Second, based on the MDP-based optimization model, the proposed Deep Deterministic Policy Gradient (DDPG) algorithm realizes the optimal reliability-quality joint control in manufacturing networks. Besides, it also offers a novel mixed action space containing discrete maintenance and continuous quality inspection, which could satisfy the action diversity in actual production. At last, training and experiments imply our algorithm is more adaptable to diverse manufacturing scenarios than traditional ones. Also, it is proved that more-frequent state observations for learning cannot help the constructed reinforcement learning model get a better control policy because of the information redundancy.

Suggested Citation

  • Ye, Zhenggeng & Cai, Zhiqiang & Yang, Hui & Si, Shubin & Zhou, Fuli, 2023. "Joint optimization of maintenance and quality inspection for manufacturing networks based on deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
  • Handle: RePEc:eee:reensy:v:236:y:2023:i:c:s0951832023002053
    DOI: 10.1016/j.ress.2023.109290
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0951832023002053
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ress.2023.109290?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tambe, Pravin P. & Kulkarni, Makarand S., 2022. "A reliability based integrated model of maintenance planning with quality control and production decision for improving operational performance," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    2. Meng, Xueyu & Cai, Zhiqiang & Si, Shubin & Duan, Dongli, 2021. "Analysis of epidemic vaccination strategies on heterogeneous networks: Based on SEIRV model and evolutionary game," Applied Mathematics and Computation, Elsevier, vol. 403(C).
    3. Wei, Shuaichong & Nourelfath, Mustapha & Nahas, Nabil, 2023. "Analysis of a production line subject to degradation and preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    4. Xiao, Lei & Song, Sanling & Chen, Xiaohui & Coit, David W., 2016. "Joint optimization of production scheduling and machine group preventive maintenance," Reliability Engineering and System Safety, Elsevier, vol. 146(C), pages 68-78.
    5. Nguyen, Van-Thai & Do, Phuc & Vosin, Alexandre & Iung, Benoit, 2022. "Artificial-intelligence-based maintenance decision-making and optimization for multi-state component systems," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    6. Che, Haiyang & Zeng, Shengkui & Li, Kehui & Guo, Jianbin, 2022. "Reliability analysis of load-sharing man-machine systems subject to machine degradation, human errors, and random shocks," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    7. Liu, Yu & Zhang, Qin & Ouyang, Zhiyuan & Huang, Hong-Zhong, 2021. "Integrated production planning and preventive maintenance scheduling for synchronized parallel machines," Reliability Engineering and System Safety, Elsevier, vol. 215(C).
    8. Bouslah, Bassem & Gharbi, Ali & Pellerin, Robert, 2018. "Joint production, quality and maintenance control of a two-machine line subject to operation-dependent and quality-dependent failures," International Journal of Production Economics, Elsevier, vol. 195(C), pages 210-226.
    9. Han, Xiao & Wang, Zili & Xie, Min & He, Yihai & Li, Yao & Wang, Wenzhuo, 2021. "Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    10. Xiao Wang & Hongwei Wang & Chao Qi, 2016. "Multi-agent reinforcement learning based maintenance policy for a resource constrained flow line system," Journal of Intelligent Manufacturing, Springer, vol. 27(2), pages 325-333, April.
    11. Yihai He & Changchao Gu & Zhaoxiang Chen & Xiao Han, 2017. "Integrated predictive maintenance strategy for manufacturing systems by combining quality control and mission reliability analysis," International Journal of Production Research, Taylor & Francis Journals, vol. 55(19), pages 5841-5862, October.
    12. Ait-El-Cadi, Abdessamad & Gharbi, Ali & Dhouib, Karem & Artiba, Abdelhakim, 2021. "Integrated production, maintenance and quality control policy for unreliable manufacturing systems under dynamic inspection," International Journal of Production Economics, Elsevier, vol. 236(C).
    13. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    14. Gao, Hongda & Cui, Lirong & Qiu, Qingan, 2019. "Reliability modeling for degradation-shock dependence systems with multiple species of shocks," Reliability Engineering and System Safety, Elsevier, vol. 185(C), pages 133-143.
    15. Zhao, Yunfei & Smidts, Carol, 2022. "Reinforcement learning for adaptive maintenance policy optimization under imperfect knowledge of the system degradation model and partial observability of system states," Reliability Engineering and System Safety, Elsevier, vol. 224(C).
    16. Lee, Juseong & Mitici, Mihaela, 2023. "Deep reinforcement learning for predictive aircraft maintenance using probabilistic Remaining-Useful-Life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    17. Zhang, Nailong & Si, Wujun, 2020. "Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    18. Hui Yang & Soundar Kumara & Satish T.S. Bukkapatnam & Fugee Tsung, 2019. "The internet of things for smart manufacturing: A review," IISE Transactions, Taylor & Francis Journals, vol. 51(11), pages 1190-1216, November.
    19. Li, Yaping & Xia, Tangbin & Chen, Zhen & Pan, Ershun, 2023. "Multiple degradation-driven preventive maintenance policy for serial-parallel multi-station manufacturing systems," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    20. Sharareh Taghipour & Dragan Banjevic, 2012. "Optimum inspection interval for a system under periodic and opportunistic inspections," IISE Transactions, Taylor & Francis Journals, vol. 44(11), pages 932-948.
    21. Cheng, Guo Qing & Zhou, Bing Hai & Li, Ling, 2018. "Integrated production, quality control and condition-based maintenance for imperfect production systems," Reliability Engineering and System Safety, Elsevier, vol. 175(C), pages 251-264.
    22. Andriotis, C.P. & Papakonstantinou, K.G., 2021. "Deep reinforcement learning driven inspection and maintenance planning under incomplete information and constraints," Reliability Engineering and System Safety, Elsevier, vol. 212(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Azizi, Fariba & Salari, Nooshin, 2023. "A novel condition-based maintenance framework for parallel manufacturing systems based on bivariate birth/birth–death processes," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    2. Mikhail, Mina & Ouali, Mohamed-Salah & Yacout, Soumaya, 2024. "A data-driven methodology with a nonparametric reliability method for optimal condition-based maintenance strategies," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    3. Liao, Ruoyu & He, Yihai & Feng, Tianyu & Yang, Xiuzhen & Dai, Wei & Zhang, Weifang, 2023. "Mission reliability-driven risk-based predictive maintenance approach of multistate manufacturing system," Reliability Engineering and System Safety, Elsevier, vol. 236(C).
    4. Tambe, Pravin P. & Kulkarni, Makarand S., 2022. "A reliability based integrated model of maintenance planning with quality control and production decision for improving operational performance," Reliability Engineering and System Safety, Elsevier, vol. 226(C).
    5. Najafi, Seyedvahid & Lee, Chi-Guhn, 2023. "A deep reinforcement learning approach for repair-based maintenance of multi-unit systems using proportional hazards model," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Mohammadi, Reza & He, Qing, 2022. "A deep reinforcement learning approach for rail renewal and maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    7. Jiang, Junwei & An, Youjun & Dong, Yuanfa & Hu, Jiawen & Li, Yinghe & Zhao, Ziye, 2023. "Integrated optimization of non-permutation flow shop scheduling and maintenance planning with variable processing speed," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    8. Yang, Hongbing & Li, Wenchao & Wang, Bin, 2021. "Joint optimization of preventive maintenance and production scheduling for multi-state production systems based on reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 214(C).
    9. Tseremoglou, Iordanis & Santos, Bruno F., 2024. "Condition-Based Maintenance scheduling of an aircraft fleet under partial observability: A Deep Reinforcement Learning approach," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    10. Boumallessa, Zeineb & Chouikhi, Houssam & Elleuch, Mounir & Bentaher, Hatem, 2023. "Modeling and optimizing the maintenance schedule using dynamic quality and machine condition monitors in an unreliable single production system," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    11. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    12. Yao, Jinyong & Gao, Zhanfei & He, Yihai & Peng, Chong, 2024. "Integrated mission reliability modeling for multistate manufacturing systems considering heterogeneous feedstocks based on extended stochastic flow manufacturing network," Reliability Engineering and System Safety, Elsevier, vol. 243(C).
    13. Li, Yao & He, Yihai & Liao, Ruoyu & Zheng, Xin & Dai, Wei, 2022. "Integrated predictive maintenance approach for multistate manufacturing system considering geometric and non-geometric defects of products," Reliability Engineering and System Safety, Elsevier, vol. 228(C).
    14. Lee, Dongkyu & Song, Junho, 2023. "Risk-informed operation and maintenance of complex lifeline systems using parallelized multi-agent deep Q-network," Reliability Engineering and System Safety, Elsevier, vol. 239(C).
    15. Morato, P.G. & Andriotis, C.P. & Papakonstantinou, K.G. & Rigo, P., 2023. "Inference and dynamic decision-making for deteriorating systems with probabilistic dependencies through Bayesian networks and deep reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 235(C).
    16. Sinisterra, Wilfrido Quiñones & Lima, Victor Hugo Resende & Cavalcante, Cristiano Alexandre Virginio & Aribisala, Adetoye Ayokunle, 2023. "A delay-time model to integrate the sequence of resumable jobs, inspection policy, and quality for a single-component system," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    17. Lee, Juseong & Mitici, Mihaela, 2023. "Deep reinforcement learning for predictive aircraft maintenance using probabilistic Remaining-Useful-Life prognostics," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
    18. Dehghan Shoorkand, Hassan & Nourelfath, Mustapha & Hajji, Adnène, 2024. "A hybrid CNN-LSTM model for joint optimization of production and imperfect predictive maintenance planning," Reliability Engineering and System Safety, Elsevier, vol. 241(C).
    19. Cheng, Jianda & Cheng, Minghui & Liu, Yan & Wu, Jun & Li, Wei & Frangopol, Dan M., 2024. "Knowledge transfer for adaptive maintenance policy optimization in engineering fleets based on meta-reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    20. Wang, Lin & Lu, Zhiqiang & Ren, Yifei, 2020. "Joint production control and maintenance policy for a serial system with quality deterioration and stochastic demand," Reliability Engineering and System Safety, Elsevier, vol. 199(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reensy:v:236:y:2023:i:c:s0951832023002053. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/reliability-engineering-and-system-safety .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.