IDEAS home Printed from https://ideas.repec.org/a/eee/ejores/v292y2021i2p579-595.html
   My bibliography  Save this article

A performance-centred approach to optimising maintenance of complex systems

Author

Listed:
  • Barlow, E.
  • Bedford, T.
  • Revie, M.
  • Tan, J.
  • Walls, L.

Abstract

This paper introduces performance-centred maintenance (PCM) as a novel approach to maintain systems when dual consideration is given to operational performance and degradation condition. We consider situations where performance and condition do not necessarily deteriorate at the same rate typified by, say, an ageing system still achieving good performance or a new system performing poorly. In this problem context, competing interests may arise between different decision-makers, such as operators and maintainers, since alternative strategies may benefit either performance or condition at the expense of the other. To address this challenge we introduce a theoretical framework for the PCM approach and discuss key characteristics of the modelling problem. The general PCM approach is motivated by a real-world industrial system for which maintenance decisions required to be optimised. A specific application is shown for the industry problem which we model by a Markov decision process capable of interrogating decisions over multiple time-scales. We obtain an exact solution using dynamic programming. We also explore a less computationally challenging heuristic using a reinforcement learning algorithm and evaluate its accuracy for the large-scale industry model. We show that optimal maintenance policies from a PCM model can provide decision support to both maintainers and operators taking account of both perspectives of the problem.

Suggested Citation

  • Barlow, E. & Bedford, T. & Revie, M. & Tan, J. & Walls, L., 2021. "A performance-centred approach to optimising maintenance of complex systems," European Journal of Operational Research, Elsevier, vol. 292(2), pages 579-595.
  • Handle: RePEc:eee:ejores:v:292:y:2021:i:2:p:579-595
    DOI: 10.1016/j.ejor.2020.11.005
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0377221720309516
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ejor.2020.11.005?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liu, Xinbao & Yang, Tianji & Pei, Jun & Liao, Haitao & Pohl, Edward A., 2019. "Replacement and inventory control for a multi-customer product service system with decreasing replacement costs," European Journal of Operational Research, Elsevier, vol. 273(2), pages 561-574.
    2. Petchrompo, Sanyapong & Parlikad, Ajith Kumar, 2019. "A review of asset management literature on multi-asset systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 181-201.
    3. Olde Keizer, Minou C.A. & Teunter, Ruud H. & Veldman, Jasper & Babai, M. Zied, 2018. "Condition-based maintenance for systems with economic dependence and load sharing," International Journal of Production Economics, Elsevier, vol. 195(C), pages 319-327.
    4. Li, Heping & Deloux, Estelle & Dieulle, Laurence, 2016. "A condition-based maintenance policy for multi-component systems with Lévy copulas dependence," Reliability Engineering and System Safety, Elsevier, vol. 149(C), pages 44-55.
    5. Robin P. Nicolai & Rommert Dekker, 2008. "Optimal Maintenance of Multi-component Systems: A Review," Springer Series in Reliability Engineering, in: Complex System Maintenance Handbook, chapter 11, pages 263-286, Springer.
    6. Zhou, Yifan & Guo, Yiming & Lin, Tian Ran & Ma, Lin, 2018. "Maintenance optimisation of a series production system with intermediate buffers using a multi-agent FMDP," Reliability Engineering and System Safety, Elsevier, vol. 180(C), pages 39-48.
    7. Liu, Yu & Chen, Yiming & Jiang, Tao, 2020. "Dynamic selective maintenance optimization for multi-state systems over a finite horizon: A deep reinforcement learning approach," European Journal of Operational Research, Elsevier, vol. 283(1), pages 166-181.
    8. Ohno, Katsuhisa & Boh, Toshitaka & Nakade, Koichi & Tamura, Takayoshi, 2016. "New approximate dynamic programming algorithms for large-scale undiscounted Markov decision processes and their application to optimize a production and distribution system," European Journal of Operational Research, Elsevier, vol. 249(1), pages 22-31.
    9. Si, Xiao-Sheng & Wang, Wenbin & Hu, Chang-Hua & Zhou, Dong-Hua, 2011. "Remaining useful life estimation - A review on the statistical data driven approaches," European Journal of Operational Research, Elsevier, vol. 213(1), pages 1-14, August.
    10. Wang, Hongzhou, 2002. "A survey of maintenance policies of deteriorating systems," European Journal of Operational Research, Elsevier, vol. 139(3), pages 469-489, June.
    11. Deng, Qichen & Santos, Bruno F. & Curran, Richard, 2020. "A practical dynamic programming based methodology for aircraft maintenance check scheduling optimization," European Journal of Operational Research, Elsevier, vol. 281(2), pages 256-273.
    12. Zhang, Nailong & Si, Wujun, 2020. "Deep reinforcement learning for condition-based maintenance planning of multi-component systems under dependent competing risks," Reliability Engineering and System Safety, Elsevier, vol. 203(C).
    13. Gosavi, Abhijit, 2004. "Reinforcement learning for long-run average cost," European Journal of Operational Research, Elsevier, vol. 155(3), pages 654-674, June.
    14. Mérigaud, Alexis & Ringwood, John V., 2016. "Condition-based maintenance methods for marine renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 53-78.
    15. Olde Keizer, Minou C.A. & Teunter, Ruud H. & Veldman, Jasper, 2017. "Joint condition-based maintenance and inventory optimization for systems with multiple components," European Journal of Operational Research, Elsevier, vol. 257(1), pages 209-222.
    16. Fakher, Hossein Beheshti & Nourelfath, Mustapha & Gendreau, Michel, 2018. "Integrating production, maintenance and quality: A multi-period multi-product profit-maximization model," Reliability Engineering and System Safety, Elsevier, vol. 170(C), pages 191-201.
    17. Ayse Sena Eruguz & Tarkan Tan & Geert‐Jan van Houtum, 2017. "Optimizing usage and maintenance decisions for k‐out‐of‐n systems of moving assets," Naval Research Logistics (NRL), John Wiley & Sons, vol. 64(5), pages 418-434, August.
    18. Aghezzaf, E.H. & Jamali, M.A. & Ait-Kadi, D., 2007. "An integrated production and preventive maintenance planning model," European Journal of Operational Research, Elsevier, vol. 181(2), pages 679-685, September.
    19. Wang, Lin & Lu, Zhiqiang & Ren, Yifei, 2020. "Joint production control and maintenance policy for a serial system with quality deterioration and stochastic demand," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    20. Bedford, Tim & Dewan, Isha & Meilijson, Isaac & Zitrou, Athena, 2011. "The signal model: A model for competing risks of opportunistic maintenance," European Journal of Operational Research, Elsevier, vol. 214(3), pages 665-673, November.
    21. Kenné, Jean-Pierre & Gharbi, Ali, 2018. "Production and replacement policies for a deteriorating manufacturing system under random demand and qualityAuthor-Name: Ouaret, Samir," European Journal of Operational Research, Elsevier, vol. 264(2), pages 623-636.
    22. Cheng, Guoqing & Li, Ling, 2020. "Joint optimization of production, quality control and maintenance for serial-parallel multistage production systems," Reliability Engineering and System Safety, Elsevier, vol. 204(C).
    23. Olde Keizer, Minou C.A. & Flapper, Simme Douwe P. & Teunter, Ruud H., 2017. "Condition-based maintenance policies for systems with multiple dependent components: A review," European Journal of Operational Research, Elsevier, vol. 261(2), pages 405-420.
    24. Jia, Xiaodong & Jin, Chao & Buzza, Matt & Wang, Wei & Lee, Jay, 2016. "Wind turbine performance degradation assessment based on a novel similarity metric for machine performance curves," Renewable Energy, Elsevier, vol. 99(C), pages 1191-1201.
    25. Ayse Sena Eruguz & Tarkan Tan & Geert-Jan van Houtum, 2018. "Integrated maintenance and spare part optimization for moving assets," IISE Transactions, Taylor & Francis Journals, vol. 50(3), pages 230-245, March.
    26. Ekin, Tahir, 2018. "Integrated maintenance and production planning with endogenous uncertain yield," Reliability Engineering and System Safety, Elsevier, vol. 179(C), pages 52-61.
    27. Shi, Yue & Xiang, Yisha & Xiao, Hui & Xing, Liudong, 2021. "Joint optimization of budget allocation and maintenance planning of multi-facility transportation infrastructure systems," European Journal of Operational Research, Elsevier, vol. 288(2), pages 382-393.
    28. Stephane R. A. Barde & Soumaya Yacout & Hayong Shin, 2019. "Optimal preventive maintenance policy based on reinforcement learning of a fleet of military trucks," Journal of Intelligent Manufacturing, Springer, vol. 30(1), pages 147-161, January.
    29. Zhou, Yifan & Lin, Tian Ran & Sun, Yong & Ma, Lin, 2016. "Maintenance optimisation of a parallel-series system with stochastic and economic dependence under limited maintenance capacity," Reliability Engineering and System Safety, Elsevier, vol. 155(C), pages 137-146.
    30. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    31. Michele Compare & Luca Bellani & Enrico Cobelli & Enrico Zio & Francesco Annunziata & Fausto Carlevaro & Marzia Sepe, 2020. "A reinforcement learning approach to optimal part flow management for gas turbine maintenance," Journal of Risk and Reliability, , vol. 234(1), pages 52-62, February.
    32. Cho, Danny I. & Parlar, Mahmut, 1991. "A survey of maintenance models for multi-unit systems," European Journal of Operational Research, Elsevier, vol. 51(1), pages 1-23, March.
    33. Tapas K. Das & Abhijit Gosavi & Sridhar Mahadevan & Nicholas Marchalleck, 1999. "Solving Semi-Markov Decision Problems Using Average Reward Reinforcement Learning," Management Science, INFORMS, vol. 45(4), pages 560-574, April.
    34. Vu, Hai Canh & Do, Phuc & Barros, Anne & Bérenguer, Christophe, 2014. "Maintenance grouping strategy for multi-component systems with dynamic contexts," Reliability Engineering and System Safety, Elsevier, vol. 132(C), pages 233-249.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Finkelstein, Maxim & Cha, Ji Hwan & Bedford, Tim, 2023. "Optimal preventive maintenance strategy for populations of systems that generate outputs," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    2. Abhijit Gosavi & Vy K. Le, 2024. "Maintenance optimization in a digital twin for Industry 4.0," Annals of Operations Research, Springer, vol. 340(1), pages 245-269, September.
    3. Xu, Jianyu & Liu, Bin & Zhao, Xiujie & Wang, Xiao-Lin, 2024. "Online reinforcement learning for condition-based group maintenance using factored Markov decision processes," European Journal of Operational Research, Elsevier, vol. 315(1), pages 176-190.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. de Jonge, Bram & Scarf, Philip A., 2020. "A review on maintenance optimization," European Journal of Operational Research, Elsevier, vol. 285(3), pages 805-824.
    2. Urbani, Michele & Brunelli, Matteo & Punkka, Antti, 2023. "An approach for bi-objective maintenance scheduling on a networked system with limited resources," European Journal of Operational Research, Elsevier, vol. 305(1), pages 101-113.
    3. Dilaver, Halit Metehan & Akçay, Alp & van Houtum, Geert-Jan, 2023. "Integrated planning of asset-use and dry-docking for a fleet of maritime assets," International Journal of Production Economics, Elsevier, vol. 256(C).
    4. Andersen, Jesper Fink & Andersen, Anders Reenberg & Kulahci, Murat & Nielsen, Bo Friis, 2022. "A numerical study of Markov decision process algorithms for multi-component replacement problems," European Journal of Operational Research, Elsevier, vol. 299(3), pages 898-909.
    5. Pinciroli, Luca & Baraldi, Piero & Zio, Enrico, 2023. "Maintenance optimization in industry 4.0," Reliability Engineering and System Safety, Elsevier, vol. 234(C).
    6. Petchrompo, Sanyapong & Parlikad, Ajith Kumar, 2019. "A review of asset management literature on multi-asset systems," Reliability Engineering and System Safety, Elsevier, vol. 181(C), pages 181-201.
    7. Ece Zeliha Demirci & Joachim Arts & Geert-Jan Van Houtum, 2022. "A restless bandit approach for capacitated condition based maintenance scheduling," DEM Discussion Paper Series 22-01, Department of Economics at the University of Luxembourg.
    8. Shahraki, Ameneh Forouzandeh & Yadav, Om Prakash & Vogiatzis, Chrysafis, 2020. "Selective maintenance optimization for multi-state systems considering stochastically dependent components and stochastic imperfect maintenance actions," Reliability Engineering and System Safety, Elsevier, vol. 196(C).
    9. Fecarotti, Claudia & Andrews, John & Pesenti, Raffaele, 2021. "A mathematical programming model to select maintenance strategies in railway networks," Reliability Engineering and System Safety, Elsevier, vol. 216(C).
    10. Zhou, Yifan & Li, Bangcheng & Lin, Tian Ran, 2022. "Maintenance optimisation of multicomponent systems using hierarchical coordinated reinforcement learning," Reliability Engineering and System Safety, Elsevier, vol. 217(C).
    11. Do, Phuc & Assaf, Roy & Scarf, Phil & Iung, Benoit, 2019. "Modelling and application of condition-based maintenance for a two-component system with stochastic and economic dependencies," Reliability Engineering and System Safety, Elsevier, vol. 182(C), pages 86-97.
    12. Uit Het Broek, Michiel A.J. & Teunter, Ruud H. & de Jonge, Bram & Veldman, Jasper, 2021. "Joint condition-based maintenance and load-sharing optimization for two-unit systems with economic dependency," European Journal of Operational Research, Elsevier, vol. 295(3), pages 1119-1131.
    13. Olde Keizer, Minou C.A. & Flapper, Simme Douwe P. & Teunter, Ruud H., 2017. "Condition-based maintenance policies for systems with multiple dependent components: A review," European Journal of Operational Research, Elsevier, vol. 261(2), pages 405-420.
    14. Petchrompo, Sanyapong & Li, Hao & Erguido, Asier & Riches, Chris & Parlikad, Ajith Kumar, 2020. "A value-based approach to optimizing long-term maintenance plans for a multi-asset k-out-of-N system," Reliability Engineering and System Safety, Elsevier, vol. 200(C).
    15. Giovanni Rinaldi & Philipp R. Thies & Lars Johanning, 2021. "Current Status and Future Trends in the Operation and Maintenance of Offshore Wind Turbines: A Review," Energies, MDPI, vol. 14(9), pages 1-28, April.
    16. Han, Xiao & Wang, Zili & Xie, Min & He, Yihai & Li, Yao & Wang, Wenzhuo, 2021. "Remaining useful life prediction and predictive maintenance strategies for multi-state manufacturing systems considering functional dependence," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    17. Liu, Gehui & Chen, Shaokuan & Ho, Tinkin & Ran, Xinchen & Mao, Baohua & Lan, Zhen, 2022. "Optimum opportunistic maintenance schedule over variable horizons considering multi-stage degradation and dynamic strategy," Reliability Engineering and System Safety, Elsevier, vol. 225(C).
    18. Jyrki Savolainen & Michele Urbani, 2021. "Maintenance optimization for a multi-unit system with digital twin simulation," Journal of Intelligent Manufacturing, Springer, vol. 32(7), pages 1953-1973, October.
    19. Alaswad, Suzan & Xiang, Yisha, 2017. "A review on condition-based maintenance optimization models for stochastically deteriorating system," Reliability Engineering and System Safety, Elsevier, vol. 157(C), pages 54-63.
    20. Nguyen, Kim-Anh & Do, Phuc & Grall, Antoine, 2017. "Joint predictive maintenance and inventory strategy for multi-component systems using Birnbaum’s structural importance," Reliability Engineering and System Safety, Elsevier, vol. 168(C), pages 249-261.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:ejores:v:292:y:2021:i:2:p:579-595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/eor .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.